

(12) United States Patent

Greene et al.

US 9,422,538 B2 (10) **Patent No.:** (45) **Date of Patent:** *Aug. 23, 2016

(54) INNOVATIVE DISCOVERY OF THERAPEUTIC, DIAGNOSTIC, AND ANTIBODY COMPOSITIONS RELATED TO PROTEIN FRAGMENTS OF METHIONYL-TRNA SYNTHETASIS

(71) Applicants: a Tyr Pharma, Inc., San Diego, CA (US); Pangu BioPharma Limited, Hong Kong (CN)

(72) Inventors: Leslie Ann Greene, San Diego, CA (US); Kyle P. Chiang, Cardiff, CA (US); Fei Hong, San Diego, CA (US); Alain P. Vasserot, Carlsbad, CA (US); Wing-Sze Lo, Hong Kong (CN); Jeffry D. Watkins, Encinitas, CA (US); Cheryl L. Quinn, Minneapolis, MN (US); John D. Mendlein, Encinitas, CA (US)

(73) Assignees: aTyr Pharma, Inc., San Diego, CA (US); Pangu BioPharma Limited,

Hong Kong (HK)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 14/619,713

(22) Filed: Feb. 11, 2015

(65)**Prior Publication Data**

US 2015/0284705 A1 Oct. 8, 2015

Related U.S. Application Data

- (63) Continuation of application No. 13/696,044, filed as application No. PCT/US2011/035056 on May 3, 2011, now Pat. No. 8,981,045.
- (60) Provisional application No. 61/331,282, filed on May 4, 2010, provisional application No. 61/330,596, filed on May 3, 2010.

(51)	Int. Cl.	
	C07K 16/40	(2006.01)
	C12N 9/96	(2006.01)
	G01N 33/68	(2006.01)
	A61K 38/53	(2006.01)
	C12N 9/00	(2006.01)
	C12N 5/071	(2010.01)
	G01N 33/573	(2006.01)

(52) U.S. Cl.

CPC . C12N 9/93 (2013.01); A61K 38/53 (2013.01); C07K 16/40 (2013.01); C12N 5/0602 (2013.01); C12N 9/96 (2013.01); G01N 33/573 (2013.01); G01N 33/68 (2013.01); C07K 2317/76 (2013.01); C07K 2317/92 (2013.01); C12Y 601/01 (2013.01); G01N 2333/9015 (2013.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

5,370,995	Α	12/1994	Hennecke et al.
5,750,387	A	5/1998	Hodgson et al.
5,753,480	A	5/1998	Lawlor
5,756,327	A	5/1998	Sassanfar et al.
5,759,833	A	6/1998	Shiba et al.
5,776,749	A	7/1998	Hodgson et al.
5,795,757	A	8/1998	Hodgson et al.
5,798,240	A	8/1998	Martinis et al.
5,801,013	A	9/1998	Tao et al.
5,866,390	A	2/1999	Lawlor
5,885,815	Α	3/1999	Sassanfar et al.
5,928,920	Α	7/1999	Hodgson et al.
5,939,298	A	8/1999	Brown et al.
6,225,060	B1	5/2001	Clark et al.
6,428,960	B1	8/2002	Clark et al.
6,548,060	Β1	4/2003	Kim
6,696,619	Β1	2/2004	Famodu et al.
6,903,189	B2	6/2005	Schimmel et al.
7,067,126	B2	6/2006	Schimmel et al.
7,144,984	B2	12/2006	Schimmel et al.
7,196,068	B2	3/2007	Kim et al.
7,273,844	B2	9/2007	Schimmel et al.
7,413,885	B2	8/2008	Schimmel et al.
7,459,529	B2	12/2008	Kim
7,476,651	B2	1/2009	Schimmel et al.
7,521,215	B2	4/2009	Schimmel et al.
7,528,106	B2	5/2009	Friedlander et al.
7,901,917	B2	3/2011	Schimmel et al.
7,902,165	B2	3/2011	Kim
8,003,780	B2	8/2011	Kim et al.
		(Con	tinued)

FOREIGN PATENT DOCUMENTS

CA	2531146	3/2005
CN	1341725	3/2002

(Continued)

OTHER PUBLICATIONS

International Preliminary Report on Patentability for International Application No. PCT/US2010/025642, dated Aug. 30, 2011. (Continued)

Primary Examiner — Suzanne M Noakes Assistant Examiner — Jae W Lee (74) Attorney, Agent, or Firm — Cooley LLP

(57)**ABSTRACT**

Provided are compositions comprising newly identified protein fragments of aminoacyl-tRNA synthetases, polynucleotides that encode them and complements thereof, related agents, and methods of use thereof in diagnostic, drug discovery, research, and therapeutic applications.

9 Claims, 6 Drawing Sheets

US 9,422,538 B2

Page 2

(56)	Referen	ces Cited		243745 243766			Greene et al. Zhou et al.	
U.S	PATENT :	DOCUMENTS		273045		10/2013	Watkins et al.	
				280230			Greene et al.	
8,017,593 B2		Schimmel et al.		287755		10/2013		
8,026,088 B2	9/2011			315887		11/2013	Greene et al.	
8,101,566 B2		Schimmel et al.		330312			Greene et al.	
8,148,125 B2 8,404,242 B2		Schimmel et al. Zhou et al.		344096 066321			Chiang et al. Xu et al.	
8,404,471 B2		Greene et al.	2014/0	000321	А	3/2014	Au ct ai.	
8,481,296 B2	7/2013			FO	REIG	N PATE	NT DOCUMEN	ZTI
8,981,045 B2		Greene et al.		10.	ILLIO		IVI DOCOIVILI	110
2002/0182666 A1		Schimmel et al.	CN		1341	727	3/2002	
2003/0004309 A1		Kim et al.	CN		1352	242	6/2002	
2003/0017564 A1 2003/0018985 A1		Schimmel et al. Falco et al.	CN		1352		6/2002	
2003/0016965 A1	11/2003		EP EP		0893		1/1999	
2004/0009163 A1		Schimmel et al.	EP EP		0893 0897		1/1999 2/1999	
2004/0018505 A1		Lee et al.	EP		1275		1/2003	
2004/0048290 A1		Lee et al.	EP		1300	468	4/2003	
2004/0152079 A1 2004/0203094 A1		Schimmel et al. Martinis et al.	EP		1377		1/2009	
2004/0214216 A1		Famodu et al.	EP		1776		10/2009	
2004/0224981 A1		Janjic et al.	EP EP		2177 1274		4/2010 7/2010	
2005/0136513 A1	6/2005		EP		2084		3/2011	
2005/0208536 A1		Schultz et al.	WO	WO	97/25		7/1997	
2006/0024288 A1 2006/0035232 A1	2/2006		WO	WO	97/26	351	7/1997	
2006/0033232 A1 2006/0046250 A1	3/2006	McGregor et al.	WO		97/39		10/1997	
2006/0078553 A1	4/2006		WO WO		98/14		4/1998	
2006/0160175 A1		Anderson et al.	WO WO		98/50 01/07		11/1998 2/2001	
2006/0248617 A1		Imanaka et al.	wo		01/19		3/2001	
2007/0048322 A1		Schimmel et al. Kovalic et al.	WO		01/64		9/2001	
2007/0061916 A1 2007/0111238 A1		Jamieson et al.	WO		01/75		10/2001	
2008/0044854 A1		Wang et al.	WO WO		01/75 01/88		10/2001 11/2001	
2008/0113914 A1		Hays et al.	wo		01/90		11/2001	
2008/0153745 A1	6/2008		WO		01/94		12/2001	
2009/0123971 A1 2009/0226966 A1		Paulsel et al. Yokoyama et al.	WO		02/44		6/2002	
2009/0227002 A1		Schultz et al.	WO WO)2/059)2/067		8/2002 9/2002	
2009/0227662 A1		Schimmel et al.	WO)3/009		2/2003	
2009/0285792 A1		Friedlander et al.	WO		3/094		11/2003	
2010/0003230 A1 2010/0028352 A1	1/2010	Glidden Greene et al.	WO	WO 200			10/2004	
2010/0028332 A1 2010/0048413 A1		Arcus et al.	WO	WO 200 WO 200			3/2005	
2010/0092434 A1	4/2010	Belani et al.	WO WO	WO 200			11/2005 12/2005	
2010/0093082 A1		Tian et al.	WO	WO 200			2/2006	
2010/0297149 A1 2010/0310576 A1		Zhou et al. Adams et al.	WO	WO 200			6/2006	
2011/0104139 A1	5/2010		WO	WO 200			6/2007	
2011/0110917 A1		Schimmel et al.	WO WO	WO 200 WO 200			2/2008 2/2008	
2011/0136119 A1		Kim et al.	wo	WO 200			11/2008	
2011/0150885 A1		Watkins et al. Kim et al.	WO	WO 200			5/2009	
2011/0189195 A1 2011/0250701 A1		Kim et al.	WO	WO 200			9/2009	
2011/0256119 A1		Kim et al.	WO WO	WO 200 WO 200			12/2009 12/2009	
2012/0004185 A1	1/2012		wo	WO 201			2/2010	
2012/0015383 A1		Park et al.	WO	WO 201			4/2010	
2012/0058133 A1 2012/0064082 A1		Whitman et al. Watkins et al.	WO	WO 201			4/2010	
2013/0052177 A1		Schimmel et al.	WO WO	WO 201			8/2010	
2013/0108630 A1	5/2013	Watkins et al.	WO	WO 201 WO 201			8/2010 9/2010	
2013/0129703 A1		Chiang et al.	WO	WO 201			9/2010	
2013/0129704 A1 2013/0129705 A1		Greene et al. Greene et al.	WO	WO 201			10/2010	
2013/0142774 A1		Greene et al.	WO	WO 201			6/2011	
2013/0195832 A1		Greene et al.	WO WO	WO 201 WO 201			6/2011 8/2011	
2013/0202574 A1		Greene et al.	wo	WO 201			11/2011	
2013/0202575 A1		Greene et al.	WO	WO 201	1/139	799	11/2011	
2013/0202576 A1 2013/0209434 A1		Greene et al. Greene et al.	WO	WO 201			11/2011	
2013/0209472 A1		Greene et al.	WO WO	WO 201 WO 201			11/2011 11/2011	
2013/0224173 A1	8/2013	Greene et al.	WO	WO 201			11/2011	
2013/0224174 A1		Greene et al.	WO	WO 201			11/2011	
2013/0230505 A1		Greene et al.	WO	WO 201			11/2011	
2013/0230507 A1 2013/0230508 A1		Greene et al. Greene et al.	WO WO	WO 201 WO 201			11/2011 11/2011	
2013/0236455 A1		Greene et al.	WO	WO 201			11/2011	
			-		0			

(56)	Refe	erences Cited
	FOREIGN PA	ATENT DOCUMENTS
WO	WO 2011/140267	11/2011
WO	WO 2011/143482	11/2011
WO	WO 2011/146410	11/2011
WO	WO 2011/150279	12/2011
WO	WO 2011/153277	12/2011
WO	WO 2012/009289	1/2012
WO	WO 2012/021247	2/2012
WO	WO 2012/021249	2/2012
WO	WO 2012/027611	3/2012
WO	WO 2012/048125	4/2012
WO	WO 2012/158945	11/2012
WO	WO 2013/022982	2/2013
WO	WO 2013/086216	6/2013
WO	WO 2013/086228	6/2013
WO	WO 2013/115926	8/2013
WO	WO 2013/123432	8/2013
	OTHER	DUDLICATIONS

OTHER PUBLICATIONS

International Search Report and Written Opinion for International Application No. PCT/US2010/025642, mailed Oct. 29, 2010. International Search Report and Written Opinion for International Application No. PCT/US2010/059964, mailed Aug. 25, 2011. International Preliminary Report on Patentability for International Application No. PCT/US2010/059964, dated Jun. 12, 2012. International Preliminary Report on Patentability for International Application No. PCT/US2010/059963, dated Jun. 12, 2012. International Search Report and Written Opinion for International Application No. PCT/US2010/059963, mailed May 12, 2011. International Search Report and Written Opinion for International Application No. PCT/US2011/000210, mailed Aug. 12, 2011. International Preliminary Report on Patentabiltity for International Application No. PCT/US2011/000210, dated Aug. 7, 2012. Supplementary European Search Report for European Application No. 11778025.4, mailed Nov. 6, 2013.

International Search Report and Written Opinion for International Application No. PCT/US2011/034387, mailed on Mar. 23, 2012. International Preliminary Report on Patentability for International Application No. PCT/US2011/034387, dated Oct. 30, 2012. Supplementary European Search Report for European Application

Supplementary European Search Report for European Application No. 11778026.2, mailed Oct. 22, 2013.

International Search Report and Written Opinion for International Application No. PCT/US2011/034388, mailed on Mar. 23, 2012. International Preliminary Report on Patentability for International Application No. PCT/US2011/034388, dated Oct. 30, 2012.

International Search Report and Written Opinion for International Application No. PCT/US2011/043596, mailed on Feb. 29, 2012.

International Preliminary Report on Patentability for International

International Preliminary Report on Patentability for International Application No. PCT/US2011/043596, dated Jan. 15, 2013.

Supplementary European Search Report for European Application No. 11778118.7, mailed Aug. 19, 2013.

International Search Report and Written Opinion for International Application No. PCT/US2011/034838, mailed Jan. 9, 2012. International Preliminary Report on Patentability for International Application No. PCT/US2011/034838, dated Nov. 6, 2012.

International Search Report and Written Opinion for International Application No. PCT/US2011/033988, mailed on Feb. 9, 2012.

Application No. PCT/US2011/033988, mailed on Feb. 9, 2012. International Preliminary Report on Patentability for International Application No. PCT/US2011/033988, dated Oct. 30, 2012.

International Search Report and Written Opinion for International Application No. PCT/US2011/038240, mailed on Feb. 9, 2012. International Preliminary Report on Patentability for International

Application No. PCT/US2011/038240, dated Nov. 27, 2012. Supplementary European Search Report for European Application No. 11778296.1, mailed Nov. 12, 2013.

International Search Report and Written Opinion for International Application No. PCT/US2011/035250, mailed on Jan. 19, 2012. International Preliminary Report on Patentability for International Application No. PCT/2011/035250, dated Nov. 6, 2012.

International Search Report and Written Opinion for International Application No. PCT/US2011/043756, mailed on Mar. 2, 2012. International Preliminary Report on Patentability for International Application No. PCT/US2011/043756, dated Jan. 15, 2013. International Search Report and Written Opinion for International Application No. PCT/US2011/043758, mailed on Mar. 2, 2012. International Preliminary Report on Patentability for International Application No. PCT/US2011/043758, dated Jan. 15, 2013. International Search Report and Written Opinion for International Application No. PCT/US2011/034205, mailed on Feb. 8, 2012. International Preliminary Report on Patentability for International Application No. PCT/US2011/034205, dated Oct. 30, 2012. International Search Report and Written Opinion for International Application No. PCT/US2011/036684, mailed on Feb. 9, 2012. International Preliminary Report on Patentability for International Application No. PCT/US2011/036684, dated Nov. 20, 2012. International Search Report and Written Opinion for International Application No. PCT/US2011/038813, mailed on Mar. 28, 2012. International Preliminary Report on Patentability for International Application No. PCT/US2011/038813, dated Dec. 4, 2012. Supplementary European Search Report for European Application No. 11778207.8, mailed Mar. 6, 2014.

International Search Report and Written Opinion for International Application No. PCT/US2011/035056, mailed on Mar. 23, 2012. International Preliminary Report on Patentability for International Application No. PCT/US2011/035056, dated Nov. 6, 2012.

International Search Report and Written Opinion for International Application No. PCT/US2011/035053, mailed on Mar. 23, 2012. International Preliminary Report on Patentability for International Application No. PCT/US2011/035053, dated Nov. 6, 2012.

Supplementary European Search Report for European Application No. 11778120.3, mailed Nov. 15, 2013.

International Search Report and Written Opinion for International Application No. PCT/US2011/034840, mailed on Feb. 10, 2012. International Preliminary Report on Patentability for International Application No. PCT/US2011/034840, dated Nov. 6, 2012.

Supplementary European Search Report for European Application

Supplementary European Search Report for European Application No. 11777984.3, mailed Oct. 18, 2013.

International Search Report and Written Opinion for International Application No. PCT/US2011/034207, mailed Feb. 8, 2012. International Preliminary Report on Patentability for International

Application No. PCT/US2011/034207, dated Oct. 30, 2012. International Search Report and Written Opinion for International

Application No. PCT/US2011/055130, mailed on May 14, 2012. International Preliminary Report on Patentability for International Application No. PCT/US2011/055130, dated Apr. 9, 2013.

International Search Report and Written Opinion for International Application No. PCT/US2011/049223, mailed Mar. 27, 2012.

International Preliminary Report on Patentability for International Application No. PCT/US2011/049223, dated Feb. 26, 2013.

International Search Report and Written Opinion for International Application No. PCT/US2011/034626, mailed on Jan. 19, 2012. International Preliminary Report on Patentability for International

Application No. PCT/US2011/034626, dated Oct. 30, 2012. Supplementary European Search Report for European Application

No. 11781304.8, mailed Oct. 23, 2013. International Search Report and Written Opinion for International Application No. PCT/US2011/036326, mailed on Feb. 9, 2012.

International Preliminary Report on Patentability for International Application No. PCT/US2011/036326, dated Nov. 20, 2012. International Search Report and Written Opinion for International

Application No. PCT/US2011/035251, mailed on Feb. 8, 2012. International Preliminary Report on Patentability for International Application No. PCT/US2011/035251, dated Nov. 6, 2012.

Antonellis, A. et al., "The Role of Aminoacyl-tRNA Synthetases in Genetic Diseases," Annual Review of Genomics and Human Genetics, 9(1):87-107 (2008).

Bayat, V. et al., "Mutations in the Mitochondrial Methionyl-tRNA Synthetase Cause a Neurodegenerative Phenotype in Flies and a Recessive Ataxia (ARSAL) in Humans," PLoS Biology, 10(3), e1001288 (2012).

(56) References Cited

OTHER PUBLICATIONS

Brown, M. V. et al., "Mammalian aminoacyl-tRNA synthetases: Cell signaling functions of the protein translation machinery," Vascular Pharmacology, 52(1-2):21-26 (2010).

Chica, R. A. et al., "Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design," Curr. Opin. Biotechnol., 16:378-384 (2005).

Deiters, A. et al., "Site-specific PEGylation of proteins containing unnatural amino acids," Bioorg Med Chem Lett, 14(23):5743-5745 (2004).

Delgado, C. et al., "The uses and properties of PEG-linked proteins," Critical Reviews in Therapeutic Drug Carrier Systems, 9(3,4):249-304 (1992).

Deniziak, M. A. et al., "Methyionyl-tRNA Synthetase," Acta Biochimica Polonica, 48(2):337-350 (2001).

Devos, D. et al., "Practical limits of function prediction," Proteins: Structure, Function, and Genetics, 41:98-107 (2000).

Guijarro, J. I. et al., "Structure and Dynamics of the Anticodon Arm Binding Domain of Bacillus stearothermophilus Tyrosyl-tRNA Synthetase," Structure, 10:311-317 (2002).

Gunasekera et al., "Nuclear Localization of Aminoacyl-tRNA Synthetases Using Single-Cell Capillary Electrophoresis Laser-Induced Fluorescence Analysis," Analytical Chemistry, 76(16):4741-4746 (2004).

Guo, M. et al., "Functional expansion of human tRNA synthetases achieved by structural inventions," FEBS Letters, 584(2):434-442 (2010).

Guo, M. et al., "New functions of aminoacyl-tRNA synthetases beyond translation," Nature Reviews Molecular Cell Biology, 11:668-674 (2010).

Hausmann, C. D. et al., "Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed," FEMS Microbiol. Rev., 32(4):705-721 (2008).

He, R. et al., "Two non-redundant fragments in the N-terminal peptide of human cytosolic methionyl-tRNA synthetase were indispensable for the multi-synthetase complex incorporation and enzyme activity," Biochimica et Biophysica Acta, 1794(2):347-354 (2009). Hou, Y-M. et al., "Sequence determination and modeling of structural motifs for the smallest monomeric aminoacyl-tRNA synthetase," Proc. Nat. Acad. Sci., 88(3):976-980 (1991).

Ivakhno, S. S. et al., "Cytokine-Like Activities of Some AminoacyltRNA Synthetases and Auxiliary p43 Cofactor of Aminoacylation Reaction and Their Role in Oncogenesis," Exp. Oncol., 26(4):250-255 (2004).

Ivanov, K. A. et al., "Non-canonical Functions of Aminoacyl-tRNA Synthetases," Biochemistry (Moscow), 65(8):888-897 (2000).

Jura, M. et al., "Comprehensive Insight into Human AminoacyltRNA Synthetases as Autoantigens in Idiopathic Inflammatory Myopathies," Critical Reviews in Immunology, 27(6):559-572 (2007).

Kapoor, M. et al., "Mutational separation of aminoacylation and cytokine activities of human tyrosyl-tRNA synthetase," Chemistry & Biology, 16(5):531-539 (2009).

Kise, Y. et al., "A short peptide insertion crucial for angiostatic activity of human tryptophanyl-tRNA synthetase," Nature Structural & Molecular Biology, 11(2):149-156 (2004).

Kochendoerfer, G. G., "Site-specific polymer modification of therapeutic proteins," Current Opinion in Chemical Biology, 9:555-560 (2005)

Kovaleski, B. J. et al., "In vitro characterization of the interaction between HIV-1 Gag and human lysyl-tRNA synthetase," J. Bio. Chem., 281(28):19449-19456 (2006).

Kwon et al., "Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3," Proc. Natl. Acad. Sci. USA, 108(49):19635-19640 (2011).

Levine, S. M. et al., "Anti-aminoacyl tRNA synthetase immune responses: insights into the pathogenesis of the idiopathic inflammatory myopathies," Current Opinion in Rheumatology, 15(6):708-713 (2003).

Link, A. J. et al., "Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids," Proc. Nat. Acad. Sci., 103(27):10180-10185 (2006).

Mukhopadhyay, R. et al., "The GAIT System: a gatekeeper of inflammatory gene expression," Trends in Biochemical Sciences, 34(7):324-331 (2009).

Park, S. G., et al., "Aminoacyl tRNA synthetases and their connections to disease," PNAS, 105(32):11043-11049 (2008).

Park, S. G. et al., "Is there an answer? Do aminoacyl-tRNA synthetases have biological functions other than in protein biosynthesis?" IUBMB Life, 58(9):556-558 (2006).

Sen, S. et al., "Developments in directed evolution for improving enzyme functions," Appl. Biochem. Biotechnol., 143:212-223 (2007).

Veronese, F. M. et al., "Preface: Introduction and overview of peptide and protein pegylation," Advanced Drug Delivery Reviews, 54:453-456 (2002).

Wakasugi, K. et al., "Two distinct cytokines released from a human aminoacyl-tRNA synthetase," Science, 284:147-151 (1999).

Whisstock, J. C. et al., "Prediction of protein function from protein sequence," Q. Rev. Biophysics., 36(3):307-340 (2003).

Wishart, M. J. et al., "A single mutation converts a novel phosphotyrosine binding domain into a dual-specificity phosphatase," J. Biol. Chem., 270(45):26782-26785 (1995).

Witkowski, A. et al., "Conversion of β -ketoacyl synthase to a Malonyl Decarboxylase by replacement of the active cysteine with glutamine," Biochemistry, 38:11643-11650 (1999).

WPI Database Accession No. 2002-090149 (2013).

WPI Database Accession No. 2002-501208 (2013).

WPI Database Accession No. 2002-501210 (2013).

WPI Database Accession No. 2002-692409 (2013).

WPI Database Accession No. 2002-714440 (2013).

Xie, W. et al., "Long-range structural effects of a Charcot-Marie-Tooth disease-causing mutation in human glycyl-tRNA synthetase," PNAS, 104(24):9976-9981 (2007).

Yang, X-L et al., "Crystal structure of a human aminoacyl-tRNA synthetase cytokine," PNAS, 99(24):15369-15374 (2002).

Yang, X-L et al., "Gain-of-Function Mutational Activation of Human tRNA Synthetase Procytokine," Chemistry & Biology, 14:1323-1333 (2007)

Yu, Y. et al., "Crystal structure of human tryptophanyl-tRNA synthetase catalytic fragment," The Journal of Biological Chemistry, 279(9):8378-8388 (2004).

Zalipsky, S. et al., "Use of functionalized poly(ethylene glycol)s for modification of polypeptides," Polyethylene glycol chemistry: Biotechnical and Biomedical Applications, pp. 347-370, Plenum Press, New York (1992).

Zhou, Q. et al., "Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality," Nature Structural & Molecular Biology, 17(1):57-62 (2010).

Database UniParc [online], Sep. 13, 2006, "TROME NC_000012_1103_17 *Homo sapiens* (Human)," XP002719498, retrieved from EBI Database accession No. UNIPARC: UPI0000E00904.

Database UniParc [online], Jan. 15, 2010, "PDBA 2djv *Homo sapiens* (Human)," XP002719499, retrieved from EBI Database accession No. UNIPARC: UPI0000E4C913.

Database UniProt [online], Nov. 1, 1997, "RecName: Full=Methionine-tRNA ligase, cytoplasmic; EC=6.1.1.10; AltName: Full=Methionyl-tRNA synthetase; Short=MetRS," retrieved from EBI accession UNIPROT: P56192.

Database UniProt [online], Jul. 24, 2007, "SubName: Full=Methionyl-tRNA synthetase-like protein; Flags: Fragment;" XP002719500, retrieved from EBI accession No. UNIPROT: A6MIU3.

Database EMBL [online], Jan. 13, 1999, "qy61b08.x1 NCI_CGAP_Bm25 Homo sapiens cDNA clone IMAGE: 2016471 3' similar to gb:S62138 Growth Arrest and DNA-Damage-Inducible Protein GADD153 (Human), mRNA sequence," XP002719501, retrieved from EBI accession No. EM_EST:AI368577.

Do, M-H T. et al., "Novel protein agonist of thrombopoiesis acts via a physiocrine pathway distinct from that of thrombopoietin," Blood (ASH Annual Meeting Abstracts) 118(21): Abstract 2376 (2011).

(56) References Cited

OTHER PUBLICATIONS

Liu, J. et al., "Mutational Switching of a Yeast tRNA Synthetase into a Mammalian-like Synthetase Cytokine," Biochemistry, 41(48):14232-14237 (2002).

Paley, E. L. et al., "Mapping and molecular characterization of novel monoclonal antibodies to conformational epitopes on NH₂ and COOH termini of mammalian tryptophanyl-tRNA synthetase reveal link of the epitopes to aggregation and Alzheimer's disease," Molecular Immunology, 44(4):541-557 (2007).

Salazar, J. C. et al., "A truncated aminoacyl-tRNA synthetase modifies RNA," Proc. Natl. Acad. Sci. USA, 101(20):7536-7541 (2004). Kaminska et al., "The appended C-domain of human methionyl-tRNA synthetase has a tRNA-sequestering function," Biochemistry, 40:14309-14316 (2001).

Sato et al., "Solution structures of the WHEP-TRS domain of human methionyl-tRNA synthetase," (human methionyl-tRNA synthetase), Retrieved from the Internet: http://www.rcsb.org/pdb/explore/explore.do?structureld=2DJV, published Oct. 5, 2006, retrieved on. Banin, E. et al., "T2-TrpRS inhibits preretinal neovascularization and enhances physiological vascular regrowth in OIR as assessed by a

new method of quantification," Invest. Ophthalmol. Vis. Sci., 47(5):2125-2134 (2006).

Koerner, T. J. et al., "Isolation and Characterization of the Yeast Gene Coding for the Subunit of Mitochondrial Phenylalanyl-tRNA Synthetase," Journal of Biological Chemistry, 262(8):3690-3696 (1987).

Otani, A. et al., "A fragment of human TrpRS as a potent antagonist of ocular angiogenesis," PNAS, 99(1):178-183 (2002).

Smirnova, E. V. et al., "Noncanonical functions of aminoacyl-tRNA synthetases," Biochemistry (Mosc.) 77(1):15-25 (2012).

Tzima, E. et al., "Inhibition of tumor angiogenesis by a natural fragment of a tRNA synthetase," TRENDS in Biochemical Sciences, 31(1):7-10 (2006).

Greenberg, Y. et al., "The novel fragment of tyrosyl tRNA synthetase, mini-TyrRS, is secreted to induce an angiogenic response in endothelial cells," FASEB Journal, 22(5):1597-1605 (2008).

Gardner, S. et al, "TGF-beta inhibits muscle differentiation by blocking autocrine signaling pathways initiated by IGF-II," Mol. Endocrinol., 25(1):128-137 (Jan. 2011).

Kormann, M. S. D. et al., "Expression of therapeutic proteins after delivery of chemically modified mRNA in mice," Nature Biotechnology, 29(2):154-157 (2011).

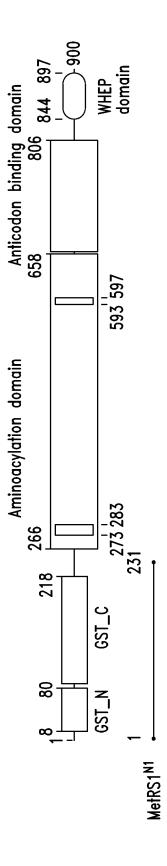


FIG. 14

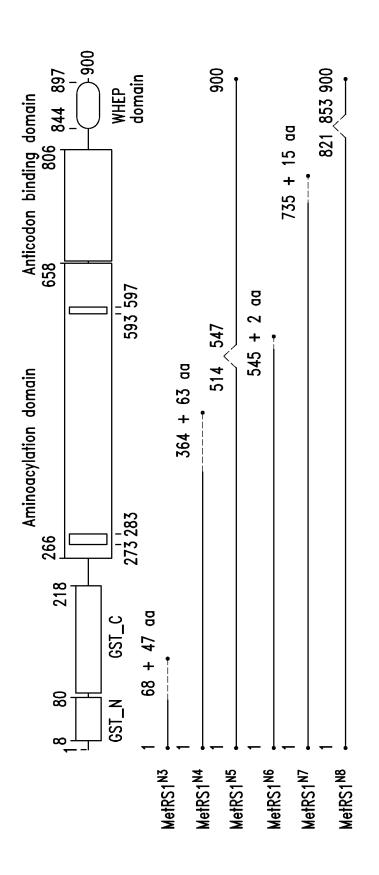


FIG. 1B

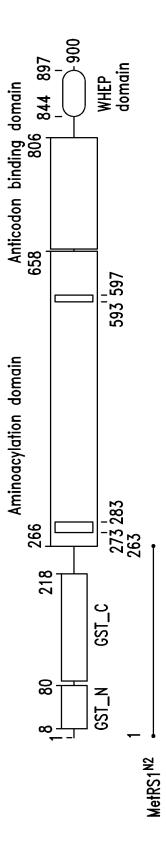


FIG. 10

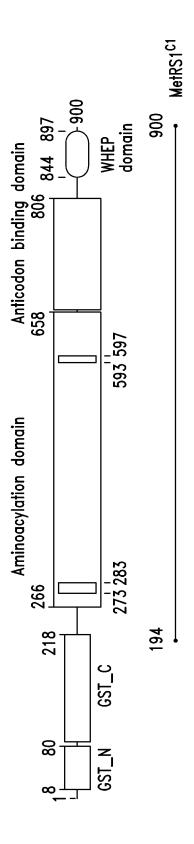


FIG. 22

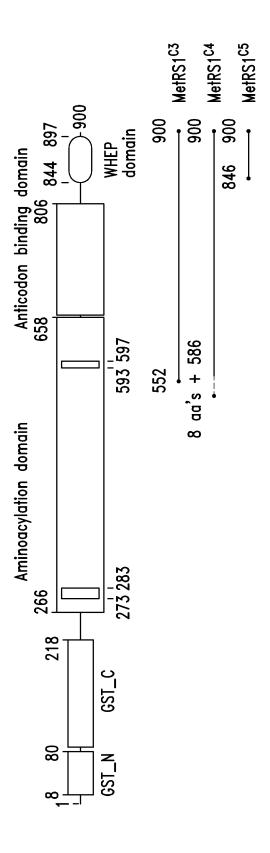


FIG. 21

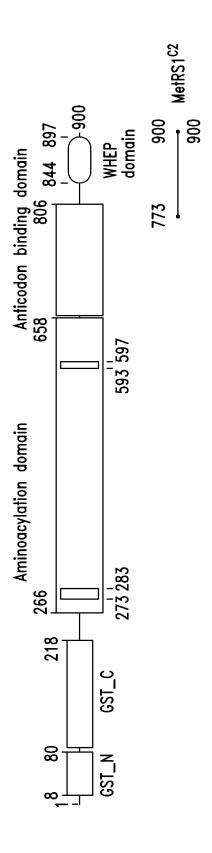


FIG. 20

INNOVATIVE DISCOVERY OF THERAPEUTIC, DIAGNOSTIC, AND ANTIBODY COMPOSITIONS RELATED TO PROTEIN FRAGMENTS OF METHIONYL-TRNA SYNTHETASIS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of U.S. application Ser. No. 13/696,044, filed May 9, 2013, now U.S. Pat. No. 8,981, 045, which is a U.S. National Phase Application of International Patent Application No. PCT/US2011/035056, filed May 3, 2011, which claims the benefit under 35 U.S.C. §119(e) of U.S. provisional patent application No. 61/331, 282, filed on May 4, 2010; and U.S. provisional patent application No. 61/330,596, filed on May 3, 2010, the entire contents of each of which, are incorporated herein by reference.

STATEMENT REGARDING SEQUENCE LISTING

The Sequence Listing associated with this application is provided in text format in lieu of a paper copy, and is hereby incorporated by reference into the specification. The name of $\ ^{25}$ the text file containing the Sequence Listing is ATYR_062_02US_ST25.txt. The text file is about 262 KB, was created on Feb. 10, 2015, and is being submitted electronically via EFS-Web.

TECHNICAL FIELD

The present invention relates generally to compositions comprising newly identified protein fragments of aminoacyltRNA synthetases and other proteins, polynucleotides that 35 encode them and complements thereof, related agents, and methods of use thereof in diagnostic, drug discovery, research, and therapeutic applications.

BACKGROUND

For over four decades, aminoacyl-tRNA synthetases (AARSs) were thought of as essential housekeeping proteins that catalyze the aminoacylation of tRNA molecules as part of protein translation. AARSs have been extensively studied in this respect, and many of their full-length sequences were cloned for sequence analysis and to provide a rich source of biochemical experimentation. Some fragments of AARSs, and other proteins, however, possess unexpected activities 50 not associated with aminoacylation, including extracellular signaling activities that modulate pathways beyond protein translation. Generally, these unexpected activities are not observed in the context of the full-length or parental protein sequences; instead, they are observed following removal or 55 resection of AARS protein fragments from their parental sequences, or by expressing and sufficiently purifying fragment AARS sequences and then testing for novel, non-synthetase related activities.

While the full-length sequences of AARS have been 60 known for some time, no systematic experimental analysis has been conducted to elucidate such AARS protein fragments, or protein fragments from related or associated proteins, or to evaluate the potential role of the full length AARS proteins for novel biological activities outside of the context 65 of amino acid synthesis. In portions of this specification, such AARS protein fragments, AARS domains, or AARS alterna2

tive splice variants are referred to herein as "resectins". In its broadest context, the term "resectin" refers to a portion of a protein which has been excised or restricted (either by means of proteolysis, alternative splicing, mutagenesis, or recombinant genetic engineering) from the context of its native fulllength or parental protein sequence, which often otherwise masks its novel biological activities. Likewise, no systematic experimental analysis has been conducted to explore the use of such resectins as biotherapeutic agents, diagnostic agents, or drug targets in the treatment of various medical conditions, or their potential association with human diseases. As essential housekeeping genes with a known function in mammals that is critical to life, AARSs were neither considered as drug targets in mammals, nor were they parsed out by standard genomic sequencing, bioinformatic, or similar efforts to identify resectins having non-synthetase activities. Standard biochemical research efforts have similarly been directed away from characterizing the biological properties of AARS resectins and their potential therapeutic and diagnostic relevance, 20 mainly due to the previously understood role of their corresponding full-length parental AARSs.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1C show the domain structure of the Methionyl aminoacyl tRNA synthetase overlaid with the relative positions and sizes of the N-terminal AARS polypeptides identified shown schematically. FIG. 1A representing fragments identified from mass spectrometry analysis, FIG. 1B representing the fragments identified from deep sequencing of transcriptomes, and FIG. 1C representing fragments identified from bioinformatics analysis.

FIGS. 2A-2C show the domain structure of the Methionyl aminoacyl tRNA synthetase overlaid with the relative positions and sizes of the C-terminal AARS polypeptides shown schematically. FIG. 2A representing fragments identified from mass spectrometry analysis, FIG. 2B representing the fragments identified from deep sequencing of transcriptomes, and FIG. 2C representing fragments identified from bioinfor-40 matics analysis.

BRIEF SUMMARY OF THE INVENTION

Embodiments of the present invention relate generally to the decoding of genetic information during the process of 45 the discovery of protein fragments of aminoacyl-tRNA synthetases (AARSs), which possess non-canonical biological activities, such as extracellular signaling activities, and/or other characteristics of therapeutic and diagnostic relevance. The AARSs are universal and essential elements of the protein synthesis machinery found in all organisms, but human AARSs and their associated proteins have naturally-occurring resected variants, with potent cell signaling activities that contribute to normal functioning of humans. The activities of these protein fragments are distinct from the protein synthesis activities commonly known for AARSs, and the present invention includes the discovery and development of these resected proteins as new biotherapeutic agents, new discovery research reagents, and as new antigens/targets for directed biologics and diagnostic agents that can be used to potentially treat or diagnose a wide variety of human diseases, such as inflammatory, hematological, neurodegenerative, autoimmune, hematopoietic, cardiovascular, and metabolic diseases or disorders.

> The AARS protein fragment(s) of the present invention may therefore be referred to as "resectins," or alternatively as "appendacrines." As noted above, the term "resectin" derives from the process of excising or resecting a given AARS

protein fragment from the context of its full-length parent AARS sequence, which typically masks its non-canonical activities. In certain instances, the AARS protein fragments and polynucleotides of the present invention were identified through the occurrence of this resection process, whether naturally-occurring (e.g., proteolytic, splice variant), artificially-induced, or predicted. The term "appendacrine" derives from a combination of "append" (from Latin-appender) and to "separate" or "discern" (from Greekcrines)," and also reflects the separation of one or more appended domains of the AARS protein fragments from their corresponding full-length or parent AARS sequences.

Although a few AARS fragments have been previously shown to have non-synthetase activities, the expression, isolation, purification, and characterization of such fragments for biotherapeutic, discovery, or diagnostic utility is limited, and persons skilled in the art would not have readily appreciated such activities to associate with each member of the entire family of AARSs, or with alternative fragments. Here, 20 a methodical approach was utilized to discover and verify AARS protein fragments for the 20 mitochondrial and 20 cytosolic AARSs (and associated proteins) for biotherapeutic discovery and diagnostic utility. For instance, certain of the present AARS protein fragment(s) and polynucleotides that 25 encode them are identified from biological samples using mass spectrometry (MS), mainly to identify proteolytic fragments, and others were identified by deep sequencing techniques, mainly to identify splice variants. Other AARS protein fragment(s) are identified using in silico predictions of 30 amino acid sequences, such as by computationally comparing synthetases from humans and lower organisms along with key demarcations (e.g., protease sites); this approach utilized sequence analysis of the full-length AARS based on specific criteria to discern proteolytic fragments and functional 35 domains possessing non-canonical biological activities.

Novel resectins of the AARSs are unexpected, and their differential expression is also unexpected. Specific resections are typically seen under different treatments (e.g., from cells growth (e.g., adult brain vs. fetal brain) and for different tissue types (e.g., pancreas vs. liver). The pattern of expression is not the same for all aminoacyl tRNA synthetases despite the fact that the canonical functions for all aminoacyl tRNA synthetases are needed in the same cell locations and in relatively 45 proportional amounts. One would not expect the levels of an aminoacyl tRNA synthetase activity to increase without an increase in the amounts of other aminoacyl tRNA synthetase activities at the same time. The mass spectrometry and deep sequencing data indicates that aminoacyl tRNA synthetase 50 resectins do have varying levels and do occur in different sites and at different stages.

In addition, AARS protein fragments can be expressed and purified to sufficiently high purity to discern their biological properties. Previously, fragments were often not of sufficient 55 purity, folding, and stability to enable proper biological characterization of non-synthetase activities. Cell based assays, for instance, are used in conjunction with sufficiently pure, stable, soluble and folded resectins to reveal their important biotherapeutic, discovery or diagnostic activities.

In particular, embodiments of the present invention relate to protein fragments of Methionyl tRNA synthetases, related agents and compositions of biotherapeutic, discovery, or diagnostic utility, and methods of use thereof. The compositions of the present invention are useful in a variety of diag- 65 nostic, drug discovery, and therapeutic applications, as described herein. Preferably, the AARS proteins and frag-

ments are purified and stored in suitable condition to the extent required for such biotherapeutic, discovery, or diag-

Certain embodiments include compositions, comprising an isolated aminoacyl-tRNA synthetase (AARS) protein fragment of at least about 100, 90, 80, 70, 60, 50 or 40 amino acids that comprises an amino acid sequence as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, and has a solubility of at least about 5 mg/ml, and wherein the composition has a purity of at least about 95% on a protein basis, and less than about 10 EU/mg protein endotoxin. In one aspect, the composition is a therapeutic composition. In specific embodiments, the composition is substantially serum free. In some embodiments the AARS protein fragment comprises a noncanonical activity. In some embodiments, the non-canonical biological activity is selected from modulation of extracellular signaling, modulation of cell proliferation, modulation of cell differentiation, modulation of gene transcription, modulation of cytokine production or activity, modulation of cytokine receptor activity, and modulation of inflammation. In some embodiments, the AARS protein fragment has an EC₅₀ of less than about 1 nM, about 5 nM, about 10 nM, about 50 nM, about 100 nM or about 200 nM for a cell-based noncanonical biological activity.

In certain embodiments the AARS protein fragment is fused to a heterologous polypeptide. In some embodiments, the AARS fusion protein substantially retains a non-canonical activity of the AARS protein fragment. In some embodiments, the AARS fusion protein suppresses a non-canonical activity of the AARS protein fragment. In some embodiments, the heterologous polypeptide is attached to the N-terminus of the AARS protein fragment. In some embodiments, the heterologous polypeptide is attached to the C-terminus of the AARS protein fragment. In one aspect of any of these embodiments the heterologous polypeptide is selected from the group consisting of purification tags, epitope tags, targeting sequences, signal peptides, membrane translocating sequences, and PK modifiers.

In certain embodiments, the composition comprises an grown in media with or without serum), at different stages of 40 AARS protein fragment at a concentration of least about 10 mg/mL. In certain embodiments the composition comprises an AARS protein fragment which is at least 90% monodisperse. In certain embodiments the composition comprises less than about 3% high molecular weight aggregated proteins. In certain embodiments the composition exhibits less than 3% aggregation when stored at a concentration of at least 10 mg/mL in PBS for one week at 4° C. In certain embodiments the composition exhibits less than 3% aggregation when stored at a concentration of at least 10 mg/mL in PBS for one week at room temperature.

Various assays for measuring such features of resectins are described herein and may be used to define aspects of the invention. In certain aspects, these features will be preferable for biotherapeutic utility of the AARS protein fragments described herein.

Certain embodiments include compositions, comprising an isolated aminoacyl-tRNA synthetase (AARS) protein fragment of at least 50 amino acids that differs from an amino acid sequence set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9 by substitution, deletion, and/or addition of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acids, wherein the altered protein fragment substantially retains a non-canonical activity of the unaltered protein, or has a dominant negative phenotype in relation to the non-canonical activity, wherein the protein fragment has a solubility of at least about 5 mg/ml, and wherein the composition has a purity of at least about 95% on a protein basis

and less than about 10 EU/mg protein endotoxin. In specific embodiments, the composition is substantially serum free.

Other embodiments include compositions, comprising an isolated antibody that specifically binds to an isolated aminoacyl-tRNA synthetase (AARS) protein fragment as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, wherein affinity of the antibody for the AARS protein fragment is about 10x stronger than its affinity for a corresponding fulllength AARS polypeptide. One of the surprising aspects of the present invention includes certain resectins possessing "new" surfaces accessible to antibody or other directed biologics, whereas the full length AARS "hides" or covers these surfaces with other sequences or adjacent domains. The process of resecting can also create greater aqueous accessibility for revealing previously unidentified biological activities. Some embodiments include compositions, comprising an isolated antibody that specifically binds to an isolated aminoacyl-tRNA synthetase (AARS) protein fragment as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, wherein 20 the antibody has an affinity of at least about 10 nM for the AARS protein fragment, and an affinity of at least about 100 nM for a corresponding full-length AARS polypeptide. In some embodiments, the antibody binds to an epitope located within an AARS polypeptide unique splice junction as set 25 forth in any of Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, or to an amino acid sequence C-terminal of this splice site. In certain embodiments, the antibody antagonizes the non-canonical activity of the AARS protein fragment. Such antagonists may optionally bind the corresponding parental or full- 30 length AARS.

Other aspects relate to bioassay systems, comprising a substantially pure aminoacyl-tRNA synthetase (AARS) protein fragment of at least 50 amino acids that comprises an amino acid sequence as set forth in Table(s) 1-3, or Table(s) 35 4-6, or Table(s) 7-9, and a binding partner that binds to the AARS protein fragment. In one aspect, the binding partner is selected from the group consisting of a cellular surface receptor protein, nucleic acid, lipid membrane, cell regulatory protein, enzyme, and transcription factor. Optionally, such a 40 receptor may be part of a cell, preferably a cell relevant to the revealed biology of the resectin.

Certain embodiments include cellular compositions, comprising an isolated aminoacyl-tRNA synthetase (AARS) protein fragment of at least 50 amino acids that comprises an 45 amino acid sequence as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, and an engineered population of cells in which at least one cell comprises a polynucleotide encoding said AARS protein fragment. In one aspect, the cells are capable of growing in a serum free medium.

Also included are detection systems, comprising a substantially pure aminoacyl-tRNA synthetase (AARS) protein fragment of at least 50 or 100 amino acids that comprises an amino acid sequence as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, a cell that comprises a cell-surface receptor or an extracellular portion thereof that binds to the protein fragment, and a molecule of less than about 2000 daltons, or a second polypeptide, which modulates binding or interaction between the AARS protein fragment and the extracellular receptor.

Particular embodiments include diagnostic systems, comprising a substantially pure aminoacyl-tRNA synthetase (AARS) protein fragment of at least 50 amino acids that comprises an amino acid sequence as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, and a cell that comprises a 65 cell-surface receptor or an extracellular portion thereof that binds to the AARS protein fragment, wherein the system or

6

cell comprises an indicator molecule that allows detection of a change in the levels or activity of the cell-surface receptor or extracellular portion thereof.

Certain embodiments include cellular growth devices, comprising an isolated aminoacyl-tRNA synthetase (AARS) protein fragment of at least 50 amino acids that comprises an amino acid sequence as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, an engineered population of cells in which at least one cell comprises a polynucleotide encoding said AARS protein fragment, at least about 10 liters of serumfree cell media, and a sterile container. In specific embodiments, the cells utilized for any of the methods or compositions described herein are capable of growing in serum-free media, optionally with an antibiotic and an inducer.

Some embodiments relate to antisense or RNA interference (RNAi) agents, comprising a sequence that is targeted against a unique splice junction of an AARS splice variant as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9.

Also included are therapeutic compositions, comprising an isolated aminoacyl-tRNA synthetase (AARS) protein fragment of at least 50 amino acids that comprises an amino acid sequence as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, wherein the protein fragment specifically binds to a binding partner and has a solubility of at least about 5 mg/ml, and wherein the composition has a purity of at least about 95% on a protein basis. In some aspects, the composition may have less than 10 EU endotoxin/mg protein.

Also included are compositions, comprising an isolated aminoacyl-tRNA synthetase (AARS) protein fragment of at least 50 amino acids that is at least 80%, 85%, 90%, 95%, 98%, or 100% identical to an amino acid sequence set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, wherein the protein fragment has a solubility of at least about 5 mg/ml, and wherein the composition has a purity of at least about 95% on a protein basis and less than 10 EU endotoxin/mg protein. In any of these embodiments, the compositions may comprise an AARS protein fragment that is at least about 50%, about 60%, about 70%, about 80%, about 90% or about 95% monodisperse with respect to its apparent molecular mass. In another aspect of any of these embodiments, the compositions comprise less than about 10% (on a protein basis) high molecular weight aggregated proteins, or less than about 5% high molecular weight aggregated proteins, or less than about 4% high molecular weight aggregated proteins, or less than about 3% high molecular weight aggregated proteins, or less than 2% high molecular weight aggregated proteins, or less than about 1% high molecular weight aggregated proteins.

In another aspect of any of these embodiments, the compositions exhibits less than about 10% aggregation when stored at a concentration of at least 10 mg/mL in PBS for one week at 4° C., or less than about 5% aggregation when stored at a concentration of at least 10 mg/mL in PBS for one week at 4° C., or less than about 3% aggregation when stored at a concentration of at least 10 mg/mL in PBS for one week at 4° C., or less than about 2% aggregation when stored at a concentration of at least 10 mg/mL in PBS for one week at 4° C., or less than about 1% aggregation when stored at a concentration of at least 10 mg/mL in PBS for one week at 4° C.

Certain embodiments include compositions, comprising a substantially pure aminoacyl-tRNA synthetase (AARS) protein fragment of at least 50 amino acids that comprises an amino acid sequence as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, and at least one covalently or non-covalently moiety attached thereto. In some embodiments, the moiety is a detectable label. In some embodiments, the moiety is a water soluble polymer. In some embodiments, the

moiety is PEG. In one aspect of any of these embodiments, the moiety is attached to the N-terminus of the protein fragment. In one aspect of any of these embodiments, the moiety is attached to the C-terminus of the protein fragment.

Particular embodiments include compositions, comprising 5 a solid substrate attached to an isolated aminoacyl-tRNA synthetase (AARS) protein fragment of at least 50 amino acids that comprises an amino acid sequence as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, or a biologically active fragment or variant thereof, wherein the protein fragment has a solubility of at least about 5 mg/ml, and the composition has a purity of at least about 95% on a protein basis.

Also included are compositions, comprising a binding agent that specifically binds to an isolated aminoacyl-tRNA 15 synthetase (AARS) protein fragment as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, wherein the binding agent has an affinity of at least about 1 nM for the protein fragment. In one aspect, the binding agent binds to an epitope located within an AARS polypeptide unique splice junction 20 as set forth in any of Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, or to an amino acid sequence C-terminal of this splice site. In some embodiments, the binding agent antagonizes a non-canonical activity of the AARS polypeptide.

Certain embodiments include isolated aminoacyl-tRNA 25 synthetase (AARS) polypeptides, comprising an amino acid sequence of an AARS protein fragment as described herein, an amino acid sequence encoded by an AARS polynucleotide as described herein, or a variant or fragment thereof. Certain AARS polypeptides comprise an amino acid sequence that is 30 at least 80%, 85%, 90%, 95%, 98%, or 100% identical to an AARS reference sequence as disclosed in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, or Table E2. Certain AARS polypeptides consist essentially of an amino acid sequence that is at least 80%, 85%, 90%, 95%, 98%, or 100% identical 35 to an AARS reference sequence as disclosed in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, or Table E2. In certain embodiments, the polypeptide comprises a non-canonical biological activity. In specific embodiments, the non-canonical biological activity is selected from modulation of cell 40 signaling (e.g., extracellular signaling), modulation of cell proliferation, modulation of cell migration, modulation of cell differentiation, modulation of apoptosis or cell death, modulation of angiogenesis, modulation of cell binding, modulation of cellular metabolism, modulation of cellular 45 uptake, modulation of gene transcription, or secretion, modulation of cytokine production or activity, modulation of cytokine receptor activity, and modulation of inflammation.

Other aspects include antibodies and other binding agents that exhibit binding specificity for an isolated AARS 50 polypeptide as described herein, a binding partner of the AARS polypeptide, or the complex of both. In some embodiments, the affinity of the antibody or binding agent for the AARS polypeptide is about 10× stronger than its affinity for a corresponding full-length AARS polypeptide. In specific 55 embodiments, the binding agent is selected from a peptide, peptide mimetic, an adnectin, an aptamer, and a small molecule. In certain embodiments, the antibody or binding agent antagonizes a non-canonical activity of the AARS polypeptide. In other embodiments, the antibody or binding agent agonizes a non-canonical activity of the AARS polypeptide.

Certain embodiments include isolated aminoacyl-tRNA synthetase (AARS) polynucleotides, comprising a nucleotide sequence of an AARS polynucleotide as described herein, a nucleotide sequence that encodes an AARS protein fragment 65 as described herein, or a variant, a fragment, or a complement thereof. Certain AARS polynucleotides comprise a nucle-

8

otide sequence that is at least 80%, 85%, 90%, 95%, 98%, or 100% identical to an AARS reference polynucleotide, or a complement thereof, as disclosed in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, or Table E2. In some embodiments, the nucleotide sequence is codon optimized for bacterial expression. In one aspect, the nucleotide sequence is at least 80% identical a polynucleotide sequence disclosed in Table E2.

Specific AARS polynucleotides consist essentially of a nucleotide sequence that is at least 80%, 85%, 90%, 95%, 98%, or 100% identical to an AARS reference polynucleotide, or a complement thereof, as disclosed in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, or Table E2. Other AARS polynucleotides comprise or consist essentially of a nucleotide sequence that specifically hybridizes to an AARS reference polynucleotide, as disclosed in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, or Table E2. In certain embodiments, the polynucleotide is selected from a primer, a probe, and an antisense oligonucleotide. In specific embodiments, the primer, probe, or antisense oligonucleotide is targeted to a specific or unique splice junction, and/or sequence 3' of this splice site within an AARS polynucleotide.

Certain embodiments include methods of determining presence or levels of an AARS protein fragment in a sample, comprising contacting the sample with one or more binding agents that specifically bind to an AARS protein fragment as described herein, detecting the presence or absence of the binding agent, and thereby determining the presence or levels of the AARS protein fragment. Other embodiments include methods of determining presence or levels of an AARS protein fragment in a sample, comprising analyzing the sample with a detector that is capable of specifically identifying a protein fragment as described herein, and thereby determining the presence or levels of the AARS protein fragment. In specific embodiments, the detector is a mass spectrometer (MS), a flow cytometer, a protein imaging device, an enzymelinked immunosorbent assays (ELISA), or a protein microarray. Certain embodiments comprise comparing the presence or levels of the AARS protein fragment to a control sample or a predetermined value. Certain embodiments comprise characterizing the state of the sample to distinguish it from the control. In specific embodiments, the sample and control comprise a cell or tissue, and the method comprises distinguishing between cells or tissues of different species, cells of different tissues or organs, cells at different cellular developmental states, cells at different cellular differentiation states, cells at different physiological states, or healthy and diseased cells. For instance, selected resectins may be more abundant under conditions such as stress or insult.

Certain embodiments include discovery methods of, and related compositions for, identifying a compound that specifically binds to an aminoacyl-tRNA synthetase (AARS) polypeptide as described herein, or one or more of its cellular binding partners, comprising a) combining the AARS polypeptide or its cellular binding partner or both with at least one test compound under suitable conditions, and b) detecting binding of the AARS polypeptide or its cellular binding partner or both to the test compound, thereby identifying a compound that specifically binds to the AARS polypeptide or its cellular binding partner or both. In certain embodiments, the test compound is a polypeptide or peptide, an antibody or antigen-binding fragment thereof, a peptide mimetic, or a small molecule. In certain embodiments, the test compound agonizes a non-canonical biological activity of the AARS polypeptide or its cellular binding partner. In other embodiments, the test compound antagonizes a non-canonical biological activity of the AARS polypeptide or its cellular bind-

ing partner. Certain embodiments include a compound identified by the above-method, such as an agonist (e.g., small molecule, peptide).

Certain embodiments include methods of determining presence or levels of a polynucleotide sequence of an AARS 5 splice variant in a sample, comprising contacting the sample with one or more oligonucleotides that specifically hybridize to an AARS polynucleotide as described herein, detecting the presence or absence of the oligonucleotides in the sample, and thereby determining the presence or levels of the polynucleotide sequence of the AARS splice variant. Other embodiments include methods of determining presence or levels of a polynucleotide sequence of an AARS splice variant in a sample, comprising contacting the sample with at least two oligonucleotides that specifically amplify an AARS poly- 15 nucleotide as described herein, performing an amplification reaction, detecting the presence or absence of an amplified product, and thereby determining presence or levels of the polynucleotide sequence of the AARS splice variant. In specific embodiments, the oligonucleotide(s) specifically 20 hybridize to or specifically amplify a splice junction that is unique to the AARS splice variant. Certain embodiments include comparing the presence or levels of the AARS protein fragment or splice variant to a control sample or a predetermined value. Certain embodiments include characterizing the 25 state of the sample to distinguish it from the control. In specific embodiments, the sample and control comprise a cell or tissue, and the method comprises distinguishing between cells or tissues of different species, cells of different tissues or organs, cells at different cellular developmental states, cells at 30 different cellular differentiation states, or healthy and diseased cells.

Some embodiments include pharmaceutical compositions, comprising an AARS polynucleotide described herein, an AARS polypeptide described herein, a binding agent as 35 described herein, or a compound identified by the abovemethod or described herein, and a pharmaceutically acceptable excipient or carrier.

Certain embodiments include methods of modulating a cellular activity of a cell, comprising contacting the cell with 40 an AARS polynucleotide described herein, an AARS polypeptide described herein, a binding agent described herein, a compound of the above-method or described herein, or a pharmaceutical composition described herein. In specific embodiments, the cellular activity is selected from cell pro-45 liferation, cell migration, cell differentiation, apoptosis or cell death, cell signaling, angiogenesis, cell binding, cellular uptake, cell secretion, metabolism, cytokine production or activity, cytokine receptor activity, gene transcription, and inflammation. In one aspect, the cell is selected from the 50 group consisting of pre-adipocytes, bone marrow, neutrophils, blood cells, hepatocytes, astrocytes, mesenchymal stem cells, and skeletal muscle cells.

In certain embodiments, the cell is in a subject. Certain embodiments comprise treating the subject, wherein the subject has a condition associated with a neoplastic disease, an immune system disease or condition, an infectious disease, a metabolic disease, an inflammatory disorder, neuronal/neurological disease, a muscular/cardiovascular disease, a disease associated with aberrant hematopoiesis, a disease associated with aberrant angiogenesis, or a disease associated with aberrant cell survival.

Also included are processes for manufacturing a pharmaceutical compound, comprising: a) performing an in vitro screen of one or more candidate compounds in the presence 65 an AARS protein fragment of at least 50 amino acids that comprises an amino acid sequence as set forth in Table(s) 1-3,

10

or Table(s) 4-6, or Table(s) 7-9, to identify a compound that specifically binds to the AARS protein fragment; b) performing a cell-based or biochemical or receptor assay with the compound identified in step a), to identify a compound that modulates one or more non-canonical activities of the AARS protein fragment; c) optionally assessing the structure-activity relationship (SAR) of the compound identified in step b), to correlate its structure with modulation of the non-canonical activity, and optionally derivatizing the compound to alter its ability to modulate the non-canonical activity; and d) producing sufficient amounts of the compound identified in step b), or the derivatized compound in step c), for use in humans, thereby manufacturing the pharmaceutical compound.

Other embodiments include processes for manufacturing a pharmaceutical compound, comprising: a) performing an in vitro screen of one or more candidate compounds in the presence a cell-surface receptor or an extracellular portion thereof that specifically binds to an AARS protein fragment of Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, to identify a compound that specifically binds to the cell-surface receptor or extracellular portion thereof; b) performing a cell-based or biochemical or receptor assay with the compound identified in step a), to identify a compound that modulates one or more non-canonical activities of the AARS protein fragment; c) optionally assessing the structure-activity relationship (SAR) of the compound identified in step b), to correlate its structure with modulation of the non-canonical activity, and optionally derivatizing the compound to alter its ability to modulate the non-canonical activity; and d) producing sufficient amounts of the compound identified in step b), or the derivatized compound in step c), for use in humans, thereby manufacturing the pharmaceutical compound.

Some embodiments include a cellular composition, comprising an engineered population of cells in which at least one cell comprises a polynucleotide encoding a heterologous full length aminoacyl-tRNA synthetase (AARS) protein, wherein the cells are capable of growing in a serum-free medium. In one aspect, the full length aminoacyl-tRNA synthetase (AARS) protein comprises a heterologous purification or epitope tag to facilitate purification of an AARS protein fragment. In another aspect, the full length aminoacyl-tRNA synthetase (AARS) protein comprises a heterologous proteolysis site to enable production of the AARS protein fragment upon cleavage.

Some embodiments include a method for producing an AARS polypeptide as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, or Table E2 in situ within a cell, comprising; i) expressing a heterologous full length aminoacyltRNA synthetase (AARS) protein within the cell, wherein the cell comprises a protease capable of cleaving the heterologous full length aminoacyl-tRNA synthetase (AARS) protein to produce the AARS polypeptide.

Some embodiments include a method for producing an AARS polypeptide as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, or Table E2 comprising contacting an isolated full length aminoacyl-tRNA synthetase (AARS) protein with a protease that is capable of cleaving the full length aminoacyl-tRNA synthetase (AARS) protein and producing an AARS polypeptide.

Some embodiments include an engineered full length aminoacyl-tRNA synthetase (AARS) protein comprising a heterologous proteolysis site to enable the proteolytic generation of an AARS protein fragment as set forth in any of Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9 or Table E2.

Some embodiments include a composition, comprising an isolated full length aminoacyl-tRNA synthetase protein, wherein the composition has a purity of at least about 95% on

a protein basis, less than about 10 EU endotoxin/mg protein, and is substantially serum free. In one aspect, the full length aminoacyl-tRNA synthetase protein is present at a concentration of at least 10 mg/mL, and is at least 90% monodisperse.

A further embodiment includes a method of treating a disease or disorder mediated by the dysregulation of the expression, activity or spatiotemporal location of a tRNA synthetase via the administration of an AARS protein fragment, or nucleic acid encoding the ARRS protein fragment, as set forth in any of Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, or Table E2. In one aspect of this embodiment, the disease is selected cancer, neuropathy, diabetes, and inflammatory disorders.

DETAILED DESCRIPTION OF THE INVENTION

Table of Contents

I. Overview

II. Definitions

III. PURIFIED AARS PROTEIN FRAGMENTS AND VARIANTS

IV. AARS POLYNUCLEOTIDES

V. Antibodies

VI. ANTIBODY ALTERNATIVES AND OTHER BINDING AGENTS

VII. BIOASSAYS AND ANALYTICAL ASSAYS

VIII. Expression and Purification Systems

IX. DIAGNOSTIC METHODS AND COMPOSITIONS

X. Antisense and RNAi Agents

A. Antisense Agents

B. RNA INTERFERENCE AGENTS

XI. Drug Discovery

XII. METHODS OF USE

XIII. PHARMACEUTICAL FORMULATIONS, ADMINISTRATION AND KITS

XIV. Examples

I. Overview

The current invention is directed, at least in part, to the discovery of novel AARS polypeptides, and methods for their 40 preparation and use, which represent the transformation of native wild type proteins into new forms that exhibit markedly different characteristics compared to the naturally occurring full length Methionyl tRNA synthetase genes. Such AARS polypeptides were identified based on extensive 45 sequence, and mass spectrum analysis of expressed Methionyl tRNA synthetases in different tissues, followed by the systematic production and testing of each potential AARS polypeptide to identify protein sequences that represent stable and soluble protein domains which exhibit novel biological activities, and favorable therapeutic drug characteristics.

Based on this analysis at least two new novel families of AARS polypeptides derived from Methionyl tRNA synthetase have been identified.

In one aspect, such Methionyl RNA synthetase derived AARS polypeptides comprise polypeptide sequences approximately comprising amino acids 1-197 of Methionyl tRNA synthetase.

In a second aspect, such Methionyl tRNA synthetase 60 derived AARS polypeptides comprise polypeptide sequences approximately comprising amino acids 846-900 of Methionyl tRNA synthetase.

These new AARS polypeptide families represent novel, previously unknown protein products which exhibit inter alia 65 i) novel biological activity, ii) favorable protein stability and aggregation characteristics, and iii) the ability to be expressed

12

and produced at high level in prokaryotic expression systems, which are materially different characteristics not found in the intact wild type protein.

II. Definitions

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art to which the invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, preferred methods and materials are described. For the purposes of the present invention, the following terms are defined below.

The articles "a" and "an" are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, "an element" means one element or more than one element.

By "about" is meant a quantity, level, value, number, frequency, percentage, dimension, size, amount, weight or length that varies by as much as 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1% to a reference quantity, level, value, number, frequency, percentage, dimension, size, amount, weight or length.

25 An "agonist" refers to a molecule that intensifies or mimics an activity. For example, a non-canonical biological activity of an AARS, or another protein. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition that modulates the activity of an AARS either by directly interacting with the AARS or its binding partner, or by acting on components of the biological pathway in which the AARS participates. Included are partial and full agonists.

As used herein, the term "amino acid" is intended to mean 35 both naturally occurring and non-naturally occurring amino acids as well as amino acid analogs and mimetics. Naturally occurring amino acids include the 20 (L)-amino acids utilized during protein biosynthesis as well as others such as 4-hydroxyproline, hydroxylysine, desmosine, isodesmosine, homocysteine, citrulline and ornithine, for example. Nonnaturally occurring amino acids include, for example, (D)amino acids, norleucine, norvaline, p-fluorophenylalanine, ethionine and the like, which are known to a person skilled in the art. Amino acid analogs include modified forms of naturally and non-naturally occurring amino acids. Such modifications can include, for example, substitution or replacement of chemical groups and moieties on the amino acid or by derivitization of the amino acid. Amino acid mimetics include, for example, organic structures which exhibit functionally similar properties such as charge and charge spacing characteristic of the reference amino acid. For example, an organic structure which mimics Arginine (Arg or R) would have a positive charge moiety located in similar molecular space and having the same degree of mobility as the e-amino group of the side chain of the naturally occurring Arg amino acid. Mimetics also include constrained structures so as to maintain optimal spacing and charge interactions of the amino acid or of the amino acid functional groups. Those skilled in the art know or can determine what structures constitute functionally equivalent amino acid analogs and amino acid mimetics.

In certain aspects, the use of non-natural amino acids can be utilized to modify (e.g., increase) a selected non-canonical activity of an AARS protein fragment, or to alter the in vivo or in vitro half-life of the protein. Non-natural amino acids can also be used to facilitate (selective) chemical modifications (e.g., pegylation) of an AARS protein. For instance, certain

non-natural amino acids allow selective attachment of polymers such as PEG to a given protein, and thereby improve their pharmacokinetic properties.

Specific examples of amino acid analogs and mimetics can be found described in, for example, Roberts and Vellaccio, 5 The Peptides: Analysis, Synthesis, Biology, Eds. Gross and Meinhofer, Vol. 5, p. 341, Academic Press, Inc., New York, N.Y. (1983), the entire volume of which is incorporated herein by reference. Other examples include peralkylated amino acids, particularly permethylated amino acids. See, for 10 example, Combinatorial Chemistry, Eds. Wilson and Czarnik, Ch. 11, p. 235, John Wiley & Sons Inc., New York, N.Y. (1997), the entire book of which is incorporated herein by reference. Yet other examples include amino acids whose amide portion (and, therefore, the amide backbone of the 15 resulting peptide) has been replaced, for example, by a sugar ring, steroid, benzodiazepine or carbo cycle. See, for instance, Burger's Medicinal Chemistry and Drug Discovery, Ed. Manfred E. Wolff, Ch. 15, pp. 619-620, John Wiley & Sons Inc., New York, N.Y. (1995), the entire book of which is 20 incorporated herein by reference. Methods for synthesizing peptides, polypeptides, peptidomimetics and proteins are well known in the art (see, for example, U.S. Pat. No. 5,420, 109; M. Bodanzsky, Principles of Peptide Synthesis (1st ed. & 2d rev. ed.), Springer-Verlag, New York, N.Y. (1984 & 25 1993), see Chapter 7; Stewart and Young, Solid Phase Peptide Synthesis, (2d ed.), Pierce Chemical Co., Rockford, Ill. (1984), each of which is incorporated herein by reference). Accordingly, the AARS polypeptides of the present invention may be composed of naturally occurring and non-naturally 30 occurring amino acids as well as amino acid analogs and mimetics.

The term "antagonist" refers to a molecule that reduces or attenuates an activity. For example, a non-canonical biological activity of an AARS, or another protein. Antagonists may 35 include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition that modulates the activity of an AARS or its binding partner, either by directly interacting with the AARS or its binding partner or by acting on components of the biological 40 pathway in which the AARS participates. Included are partial and full antagonists.

The term "aminoacyl-tRNA synthetase" (AARS) refers generally to enzymes that in their natural or wild-type form are capable of catalyzing the esterification of a specific amino 45 acid or its precursor to one of all its compatible cognate tRNAs to form an aminoacyl-tRNA. In this "canonical" activity, aminoacyl-tRNA synthetases catalyze a two-step reaction: first, they activate their respective amino acid by forming an aminoacyl-adenylate, in which the carboxyl of the amino 50 acid is linked in to the alpha-phosphate of ATP by displacing pyrophosphate, and then, when the correct tRNA is bound, the aminoacyl group of the aminoacyl-adenylate is transferred to the 2' or 3' terminal OH of the tRNA.

Class I aminoacyl-tRNA synthetases typically have two 55 highly conserved sequence motifs. These enzymes aminoacylate at the 2'-OH of an adenosine nucleotide, and are usually monomeric or dimeric. Class II aminoacyl-tRNA synthetases typically have three highly conserved sequence motifs. These enzymes aminoacylate at the 3'-OH of the same 60 adenosine, and are usually dimeric or tetrameric. The active sites of class II enzymes are mainly made up of a seven-stranded anti-parallel β -sheet flanked by α -helices. Although phenylalanine-tRNA synthetase is class II, it aminoacylates at the 2'-OH.

AARS polypeptides include sources of mitochondrial and cytoplasmic forms of tyrosyl-tRNA synthetase (TyrRS), a

14

tryptophanyl-tRNA synthetase (TrpRS), a glutaminyl-tRNA synthetase (GlnRS), a glycyl-tRNA synthetase (GlyRS), a histidyl-tRNA synthetase (HisRS), a seryl-tRNA synthetase (SerRS), a phenylalanyl-tRNA synthetase (PheRS), an alanyl-tRNA synthetase (AlaRS), an asparaginyl-tRNA synthetase (AsnRS), an aspartyl-tRNA synthetase (AspRS), a cysteinyl-tRNA synthetase (CysRS), a glutamyl-tRNA synthetase (GluRS), a prolyl-tRNA synthetase (ProRS), an arginyl-tRNA synthetase (ArgRS), an isoleucyl-tRNA synthetase (IleRS), a leucyl-tRNA synthetase (LeuRS), a lysyl-tRNA synthetase (LysRS), a threonyl-tRNA synthetase (ThrRS), a methionyl-tRNA synthetase (MetRS), or a valyl-tRNA synthetase (ValRS). The wild-type or parental sequences of these AARS polypeptides are known in the art.

By "coding sequence" is meant any nucleic acid sequence that contributes to the code for the polypeptide product of a gene. By contrast, the term "non-coding sequence" refers to any nucleic acid sequence that does not contribute to the code for the polypeptide product of a gene.

Throughout this specification, unless the context requires otherwise, the words "comprise," "comprises," and "comprising" will be understood to imply the inclusion of a stated step or element or group of steps or elements but not the exclusion of any other step or element or group of steps or elements.

By "consisting of" is meant including, and limited to, whatever follows the phrase "consisting of" Thus, the phrase "consisting of" indicates that the listed elements are required or mandatory, and that no other elements may be present. By "consisting essentially of" is meant including any elements listed after the phrase, and limited to other elements that do not interfere with or contribute to the activity or action specified in the disclosure for the listed elements. Thus, the phrase "consisting essentially of" indicates that the listed elements are required or mandatory, but that other elements are optional and may or may not be present depending upon whether or not they materially affect the activity or action of the listed elements.

The recitation "endotoxin free" or "substantially endotoxin free" relates generally to compositions, solvents, and/or vessels that contain at most trace amounts (e.g., amounts having no clinically adverse physiological effects to a subject) of endotoxin, and preferably undetectable amounts of endotoxin. Endotoxins are toxins associated with certain bacteria, typically gram-negative bacteria, although endotoxins may be found in gram-positive bacteria, such as *Listeria monocy*togenes. The most prevalent endotoxins are lipopolysaccharides (LPS) or lipo-oligo-saccharides (LOS) found in the outer membrane of various Gram-negative bacteria, and which represent a central pathogenic feature in the ability of these bacteria to cause disease. Small amounts of endotoxin in humans may produce fever, a lowering of the blood pressure, and activation of inflammation and coagulation, among other adverse physiological effects.

Therefore, in pharmaceutical production of AARS polypeptides, it is often desirable to remove most or all traces of endotoxin from drug products and/or drug containers, because even small amounts may cause adverse effects in humans. A depyrogenation oven may be used for this purpose, as temperatures in excess of 300° C. are typically required to break down most endotoxins. For instance, based on primary packaging material such as syringes or vials, the combination of a glass temperature of 250° C. and a holding time of 30 minutes is often sufficient to achieve a 3 log reduction in endotoxin levels. Other methods of removing endotoxins are contemplated, including, for example, chromatography and filtration methods, as described herein and known in the art. Also included are methods of producing

AARS polypeptides in and isolating them from eukaryotic cells such as mammalian cells to reduce, if not eliminate, the risk of endotoxins being present in a composition of the invention. Preferred are methods of producing AARS polypeptides in and isolating them from serum free cells. Such compositions comprising AARS polypeptides represent new formulations which exhibit novel and new biological and therapeutic characteristics not found in AARS polypeptide compositions contaminated with serum or endotoxin which have the potential to bind to and alter the novel biological properties of the AARS polypeptides.

Endotoxins can be detected using routine techniques known in the art. For example, the Limulus Ameobocyte Lysate assay, which utilizes blood from the horseshoe crab, is a very sensitive assay for detecting presence of endotoxin, and reagents, kits and instrumentation for the detection of endotoxin based on this assay are commercially available, for example from the Lonza Group. In this test, very low levels of LPS can cause detectable coagulation of the limulus lysate due a powerful enzymatic cascade that amplifies this reaction. Endotoxins can also be quantitated by enzyme-linked immunosorbent assay (ELISA). To be substantially endotoxin free, endotoxin levels may be less than about 0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.09, 0.1, 0.5, 1.0, 1.5, 2, 25 2.5, 3, 4, 5, 6, 7, 8, 9, or 10 EU/mg of protein. Typically, 1 ng lipopolysaccharide (LPS) corresponds to about 1-10 EU.

In certain embodiments, the "purity" of any given agent (e.g., AARS protein fragment) in a composition may be specifically defined. For instance, certain compositions may 30 comprise an agent that is at least 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% pure, including all decimals in between, as measured, for example and by no means limiting, by high pressure liquid chromatography (HPLC), a well-known form of column chromatography used frequently in 35 biochemistry and analytical chemistry to separate, identify, and quantify compounds.

As used herein, the terms "function" and "functional" and the like refer to a biological, enzymatic, or therapeutic function.

By "gene" is meant a unit of inheritance that may occupy a specific locus on a chromosome and consists of transcriptional and/or translational regulatory sequences and/or a coding region and/or non-translated sequences (i.e., introns, 5' and 3' untranslated sequences).

"Homology" refers to the percentage number of amino acids that are identical or constitute conservative substitutions. Homology may be determined using sequence comparison programs such as GAP (Deveraux et al., 1984, *Nucleic Acids Research* 12, 387-395), which is incorporated 50 herein by reference. In this way sequences of a similar or substantially different length to those cited herein could be compared by insertion of gaps into the alignment, such gaps being determined, for example, by the comparison algorithm used by GAP.

The term "host cell" includes an individual cell or cell culture that can be or has been a recipient of any recombinant vector(s), isolated polynucleotide, or polypeptide of the invention. Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in 60 morphology or in total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation and/or change. A host cell includes cells transfected or infected in vivo or in vitro with a recombinant vector or a polynucleotide of the invention. A host cell which comprises 65 a recombinant vector of the invention is a recombinant host cell.

16

By "isolated" is meant material that is substantially or essentially free from components that normally accompany it in its native state. For example, an "isolated polynucleotide," as used herein, includes a polynucleotide that has been purified from the sequences that flank it in its naturally-occurring state, e.g., a DNA fragment which has been removed from the sequences that are normally adjacent to the fragment. Alternatively, an "isolated peptide" or an "isolated polypeptide" and the like, as used herein, includes the in vitro isolation and/or purification of a peptide or polypeptide molecule from its natural cellular environment, and from association with other components of the cell; i.e., it is not significantly associated with in vivo substances.

The term "mRNA" or sometimes refer by "mRNA transcripts" as used herein, include, but not limited to pre-mRNA transcript(s), transcript processing intermediates, mature mRNA(s) ready for translation and transcripts of the gene or genes, or nucleic acids derived from the mRNA transcript(s). Transcript processing may include splicing, editing and degradation. As used herein, a nucleic acid derived from an mRNA transcript refers to a nucleic acid for whose synthesis the mRNA transcript or a subsequence thereof has ultimately served as a template. A cDNA reverse transcribed from an mRNA, an RNA transcribed from that cDNA, a DNA amplified from the cDNA, an RNA transcribed from the amplified DNA, etc., are all derived from the mRNA transcript and detection of such derived products is indicative of the presence and/or abundance of the original transcript in a sample. Thus, mRNA derived samples include, but are not limited to, mRNA transcripts of the gene or genes, cDNA reverse transcribed from the mRNA, cRNA transcribed from the cDNA, DNA amplified from the genes, RNA transcribed from amplified DNA, and the like.

"Non-canonical" activity as used herein, refers generally to either i) a new activity possessed by an AARS polypeptide of the invention that is not possessed to any significant degree by the intact native full length parental protein, or ii) an activity that was possessed by the by the intact native full length parental protein, where the AARS polypeptide either exhibits a significantly higher (i.e. at least 20% greater) specific activity compared to the intact native full length parental protein, or exhibits the activity in a new context; for example by isolating the activity from other activities possessed by the intact native full length parental protein. In the case of AARS polypeptides, non-limiting examples of non-canonical activities include extracellular signaling, RNA-binding, amino acid-binding, modulation of cell proliferation, modulation of cell migration, modulation of cell differentiation (e.g., hematopoiesis, neurogenesis, myogenesis, osteogenesis, and adipogenesis), modulation of gene transcription, modulation of apoptosis or other forms of cell death, modulation of cell signaling, modulation of cellular uptake, or secretion, modulation of angiogenesis, modulation of cell binding, modulation of cellular metabolism, modulation of cytokine produc-55 tion or activity, modulation of cytokine receptor activity, modulation of inflammation, and the like.

The term "half maximal effective concentration" or " EC_{50} " refers to the concentration of an AARS protein fragment, antibody or other agent described herein at which it induces a response halfway between the baseline and maximum after some specified exposure time; the EC_{50} of a graded dose response curve therefore represents the concentration of a compound at which 50% of its maximal effect is observed. In certain embodiments, the EC_{50} of an agent provided herein is indicated in relation to a "non-canonical" activity, as noted above. EC_{50} also represents the plasma concentration required for obtaining 50% of a maximum effect in vivo.

Similarly, the "EC $_{90}$ " refers to the concentration of an agent or composition at which 90% of its maximal effect is observed. The "EC $_{90}$ " can be calculated from the "EC $_{50}$ " and the Hill slope, or it can be determined from the data directly, using routine knowledge in the art. In some embodiments, the 5 EC $_{50}$ of an AARS protein fragment, antibody, or other agent is less than about 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, 60, 70, 80, 90, or 100 nM. Preferably, biotherapeutic composition will have an EC $_{50}$ value of 10 about 1 nM or less.

The term "modulating" includes "increasing" or "stimulating," as well as "decreasing" or "reducing," typically in a statistically significant or a physiologically significant amount as compared to a control. Accordingly a "modulator" 15 may be an agonist, an antagonist, or any mixture thereof depending upon the conditions used. An "increased" or "enhanced" amount is typically a "statistically significant" amount, and may include an increase that is 1.1, 1.2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30 or more times (e.g., 500, 1000 times) 20 (including all integers and decimal points in between and above 1, e.g., 1.5, 1.6, 1.7, 1.8, etc.) the amount produced by no composition (the absence of an agent or compound) or a control composition. A "decreased" or reduced amount is typically a "statistically significant" amount, and may include 25 a 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% decrease in the amount produced by no composition (the absence of an agent or compound) or 30 a control composition, including all integers in between. As one non-limiting example, a control in comparing canonical and non-canonical activities could include the AARS protein fragment of interest compared to its corresponding fulllength AARS, or a fragment AARS having comparable 35 canonical activity to its corresponding full-length AARS. Other examples of "statistically significant" amounts are described herein.

By "obtained from" is meant that a sample such as, for example, a polynucleotide extract or polypeptide extract is isolated from, or derived from, a particular source of the subject. For example, the extract can be obtained from a tissue or a biological fluid isolated directly from the subject. "Derived" or "obtained from" can also refer to the source of a polypeptide or polynucleotide sequence. For instance, an AARS sequence of the present invention may be "derived" from the sequence information of an AARS proteolytic fragment or AARS splice variant, or a portion thereof, whether naturally-occurring or artificially generated, and may thus comprise, consist essentially of, or consist of that sequence

The terms "polypeptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues and to variants and synthetic and naturally occurring analogues of the same. Thus, these terms apply to amino acid polymers in which one or more amino acid residues are synthetic non-naturally occurring amino acids, such as a chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally-occurring amino acid polymers and naturally occurring chemical derivatives thereof. Such derivatives include, for example, post-translational modifications and degradation products including pyroglutamyl, isoaspartyl, proteolytic, phosphorylated, glycosylated, oxidatized, isomerized, and deaminated variants of the AARS reference fragment.

The recitations "sequence identity" or, for example, comprising a "sequence 50% identical to," as used herein, refer to the extent that sequences are identical on a nucleotide-by-

nucleotide basis or an amino acid-by-amino acid basis over a window of comparison. Thus, a "percentage of sequence identity" may be calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, I) or the identical amino acid residue (e.g., Ala, Pro, Ser, Thr, Gly, Val, Leu, Ile, Phe, Tyr, Trp, Lys, Arg, His, Asp, Glu, Asn, Gln, Cys and Met) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity.

Terms used to describe sequence relationships between two or more polynucleotides or polypeptides include "reference sequence," "comparison window," "sequence identity," "percentage of sequence identity" and "substantial identity." A "reference sequence" is at least 12 but frequently 15 to 18 and often at least 25 monomer units, inclusive of nucleotides and amino acid residues, in length. Because two polynucleotides may each comprise (1) a sequence (i.e., only a portion of the complete polynucleotide sequence) that is similar between the two polynucleotides, and (2) a sequence that is divergent between the two polynucleotides, sequence comparisons between two (or more) polynucleotides are typically performed by comparing sequences of the two polynucleotides over a "comparison window" to identify and compare local regions of sequence similarity. A "comparison window" refers to a conceptual segment of at least 6 contiguous positions, usually about 50 to about 100, more usually about 100 to about 150 in which a sequence is compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. The comparison window may comprise additions or deletions (i.e., gaps) of about 20% or less as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Optimal alignment of sequences for aligning a comparison window may be conducted by computerized implementations of algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, Genetics Computer Group, 575 Science Drive Madison, Wis., USA) or by inspection and the best alignment (i.e., resulting in the highest percentage homology over the comparison window) generated by any of the various methods selected. Reference also may be made to the BLAST family of programs as for example disclosed by Altschul et al., 1997, Nucl. Acids Res. 25:3389. A detailed discussion of sequence analysis can be found in Unit 19.3 of Ausubel et al., "Current Protocols in Molecular Biology," John Wiley & Sons Inc, 1994-1998, Chapter 15.

Calculations of sequence similarity or sequence identity between sequences (the terms are used interchangeably herein) are performed as follows. To determine the percent identity of two amino acid sequences, or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In certain embodiments, the length of a reference sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, 60%, and even more preferably at least 70%, 80%, 90%, 100% of the length of the reference sequence. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occu-

pied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position.

The percent identity between the two sequences is a function of the number of identical positions shared by the 5 sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

The comparison of sequences and determination of percent identity between two sequences can be accomplished using a 10 mathematical algorithm. In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch, (1970, J. Mol. Biol. 48: 444-453) algorithm which has been incorporated into the GAP program in the GCG software package (available at 15 http://www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program 20 in the GCG software package (available at http://www.gcg. com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A particularly preferred set of parameters (and the one that should be used unless otherwise specified) are a Blossum 62 25 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frame shift gap penalty of 5.

The percent identity between two amino acid or nucleotide sequences can be determined using the algorithm of E. Meyers and W. Miller (1989, *Cabios*, 4: 11-17) which has been 30 incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

The nucleic acid and protein sequences described herein can be used as a "query sequence" to perform a search against 35 public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al., (1990, J. Mol. Biol, 215: 403-10). BLAST nucleotide searches can be performed with the NBLAST 40 program, score=100, wordlength=12 to obtain nucleotide sequences homologous to nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to protein molecules of 45 the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997, Nucleic Acids Res, 25: 3389-3402). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST 50 and NBLAST) can be used.

The term "solubility" refers to the property of an agent provided herein to dissolve in a liquid solvent and form a homogeneous solution. Solubility is typically expressed as a concentration, either by mass of solute per unit volume of 55 solvent (g of solute per kg of solvent, g per dL (100 mL), mg/ml, etc.), molarity, molality, mole fraction or other similar descriptions of concentration. The maximum equilibrium amount of solute that can dissolve per amount of solvent is the solubility of that solute in that solvent under the specified 60 conditions, including temperature, pressure, pH, and the nature of the solvent. In certain embodiments, solubility is measured at physiological pH. In certain embodiments, solubility is measured in water or a physiological buffer such as PBS. In certain embodiments, solubility is measured in a 65 biological fluid (solvent) such as blood or serum. In certain embodiments, the temperature can be about room tempera20

ture (e.g., about 20, 21, 22, 23, 24, 25° C.) or about body temperature (37° C.). In certain embodiments, an agent such as an AARS protein fragment has a solubility of at least about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, or 30 mg/ml at room temperature or at 37° C.

A "splice junction" as used herein includes the region in a mature mRNA transcript or the encoded polypeptide where the 3' end of a first exon joins with the 5' end of a second exon. The size of the region may vary, and may include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or more (including all integers in between) nucleotide or amino acid residues on either side of the exact residues where the 3' end of one exon joins with the 5' end of another exon. An "exon" refers to a nucleic acid sequence that is represented in the mature form of an RNA molecule after either portions of a precursor RNA (introns) have been removed by cis-splicing or two or more precursor RNA molecules have been ligated by transsplicing. The mature RNA molecule can be a messenger RNA or a functional form of a non-coding RNA such as rRNA or tRNA. Depending on the context, an exon can refer to the sequence in the DNA or its RNA transcript. An "intron" refers to a non-coding nucleic acid region within a gene, which is not translated into a protein. Non-coding intronic sections are transcribed to precursor mRNA (pre-mRNA) and some other RNAs (such as long noncoding RNAs), and subsequently removed by splicing during the processing to mature RNA.

A "splice variant" refers to a mature mRNA and its encoded protein that are produced by alternative splicing, a process by which the exons of the RNA (a primary gene transcript or pre-mRNA) are reconnected in multiple ways during RNA splicing. The resulting different mRNAs may be translated into different protein isoforms, allowing a single gene to code for multiple proteins.

A "subject," as used herein, includes any animal that exhibits a symptom, or is at risk for exhibiting a symptom, which can be treated or diagnosed with an AARS polynucleotide or polypeptide of the invention. Also included are subjects for which it is desirable to profile levels of AARS polypeptides and/or polynucleotides of the invention, for diagnostic or other purposes. Suitable subjects (patients) include laboratory animals (such as mouse, rat, rabbit, or guinea pig), farm animals, and domestic animals or pets (such as a cat or dog). Non-human primates and, preferably, human patients, are included.

"Treatment" or "treating," as used herein, includes any desirable effect on the symptoms or pathology of a disease or condition that can be effected by the non-canonical activities of an AARS polynucleotide or polypeptide, as described herein, and may include even minimal changes or improvements in one or more measurable markers of the disease or condition being treated. Also included are treatments that relate to non-AARS therapies, in which an AARS sequence described herein provides a clinical marker of treatment. "Treatment" or "treating" does not necessarily indicate complete eradication or cure of the disease or condition, or associated symptoms thereof. The subject receiving this treatment is any subject in need thereof. Exemplary markers of clinical improvement will be apparent to persons skilled in the art.

The practice of the present invention will employ, unless indicated specifically to the contrary, conventional methods of molecular biology and recombinant DNA techniques within the skill of the art, many of which are described below for the purpose of illustration. Such techniques are explained

22

fully in the literature. See, e.g., Sambrook, et al., Molecular Cloning: A Laboratory Manual (3rd Edition, 2000); DNA Cloning: A Practical Approach, vol. I & II (D. Glover, ed.); Oligonucleotide Synthesis (N. Gait, ed., 1984); Oligonucleotide Synthesis: Methods and Applications (P. Herdewijn, ed., 2004); Nucleic Acid Hybridization (B. Hames & S. Higgins, eds., 1985); Nucleic Acid Hybridization: Modern Applications (Buzdin and Lukyanov, eds., 2009); Transcription and Translation (B. Hames & S. Higgins, eds., 1984); Animal Cell Culture (R. Freshney, ed., 1986); Freshney, R. I. (2005) Culture of Animal Cells, a Manual of Basic Technique, 5th Ed. Hoboken N.J., John Wiley & Sons; B. Perbal, A Practical Guide to Molecular Cloning (3rd Edition 2010); Farrell, R., 15 RNA Methodologies: A Laboratory Guide for Isolation and Characterization (3rd Edition 2005), Methods of Enzymology: DNA Structure Part A: Synthesis and Physical Analysis of DNA Methods in Enzymology, Academic Press; Using Antibodies: A Laboratory Manual: Portable Protocol NO. 1 by Edward Harlow, David Lane, Ed Harlow (1999, Cold Spring Harbor Laboratory Press, ISBN 0-87969-544-7); Antibodies: A Laboratory Manual by Ed Harlow (Editor), David Lane (Editor) (1988, Cold Spring Harbor Laboratory 25 Press, ISBN 0-87969-3, 4-2), 1855. Handbook of Drug Screening, edited by Ramakrishna Seethala, Prabhavathi B. Fernandes (2001, New York, N.Y., Marcel Dekker, ISBN 0-8247-0562-9); and Lab Ref: A Handbook of Recipes, 30 Reagents, and Other Reference Tools for Use at the Bench, Edited Jane Roskams and Linda Rodgers, (2002, Cold Spring Harbor Laboratory, ISBN 0-87969-630-3).

All publications, patents and patent applications cited 35 herein are hereby incorporated by reference in their entirety.

III. Purified AARS Protein Fragments and Variants for Therapeutics and Other Applications

Surprisingly, and unlike their full-length parental sequences that are known only for their aminoacylation-activities, it has been found that AARS fragments possess biological activities important for biotherapeutic, discovery and diagnostic applications. Embodiments of the present invention therefore include full length proteins, mature protein isoforms and protein fragments of aminoacyl-tRNA synthetases (AARS), in addition to biologically active variants and fragments thereof. In certain embodiments, the proteins and fragments may arise through endogenous proteolysis, in vitro proteolysis, splice variation, or in silico prediction, among other mechanisms.

The AARS protein fragments described herein, and variants thereof, may possess at least one "non-canonical" biological activity. The AARS protein fragment(s) of the present invention are also referred to herein as "AARS polypeptides" or "AARS reference polypeptides." In certain embodiments, the AARS polypeptides provided herein comprise or consist essentially of all or a portion of the AARS polypeptide "reference sequence(s)" as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9 below, which represent the amino acid sequence(s) of various fragments of Methionyl tRNA synthetases. Mouse and human AARS protein sequences are

highly related, typically differing by no more than a few amino acids within an entire sequence, a particular domain, or a particular protein fragment.

N-Terminal AARS Polypeptides

Tables 1, 2 & 3

	AARS pol	Table 1A ypeptides identified by MS	
Name	Type/ species/ Resi- dues		SEQ. ID. NO.
MetRS ^{N1}	Protein/ Human/ 1-231	MRLFVSDGVPGCLPVLAAAGRARGRA LISTVGPEDCVVPFLTRPKVPVLQLD. YLFSTSAICRYFFLLSGWEQDDLTNQ WEATELQPALSAALYYLVVQGKKGED SVRRALTHIDHSLSRQNCPFLAGET DIVLWGALYPLLQDPAYLPEELSALH QTLSTQEPCQRAAETVLKQQGVLALR QKQPQPSPAEGRAVTNEPEEEELATL	SGN ID. WLE NO. VLG 12 SLA SWF PYL
\mathtt{MetRS}^{N1}	DNA/ Human/	ATGAGACTGTTCGTGAGTGATGCCGTCGGGTTGCTTGCCGGTGCTGCCCCCGGGAGAGCCCGGGCAGAGCAGAGGGCCTCATCAGCACCTGCTAGCCCGGAAG	GC ID. T NO. AT 13 TAA
		GGTCCTGTCTTGCAGCTGGATAGCG AACTACCTCTTCTCCACTAGTGCAAT CCGATATTTTTTTTTT	CTG GGG CT C TAG
		TGGTCCAAGGCAAGAAGGGGAAGAT TTCTTGGTTCAGTGCGGAGAGCCCTG. CACATTGACCACAGCTTGAGTCGTCA- ACTGTCCTTTCCTGGCTGGGGAGACA- ATCTCTAGCCGACATTGTTTTGTGGG- CCCTATACCCATTACTGCAAGATCCC	ACT GA GA GAG GCC
		TACCTCCCTGAGGAGCTGAGTGCCCT ACAGCTGGTTCCAGACACTGAGTACC GGAACCATGTCAGCGAGCTGCAGAGA GTACTGAAACAGCAGGTGCTCCTGGC TCCGGCCTTACCTCCAAAAGCAGCCC GCCCAGCCCCGCTGAGGGAAGGGCTG ACCAATGAGCCTGAGGAGGAGGAGGAGCT GCTACCCTATCTGAGGAG	CA CT TC CA TC
		Table 1B MetRS ^{N1} pec peptides detected and erred linking peptides	
Type/ species	Sequence		SEQ. ID. NO.
Protein/ mouse	LFVSEGSP	GSLPVLAAAAR	SEQ. ID NO. 14
Protein/ mouse	GRAELLIS	TVGPEECVVPFLTR	SEQ. ID NO. 15
Protein/ mouse	VPVLQLDS	GNYLFSASAI CR	SEQ. ID NO. 16
Protein/ mouse	CLVVQGKK LAGDTESL	EQDDLTNQWLEWEATELQPVLSAALH GEDILGPLRRVLTHIDHSLSRQNCPF ADIVLWGALYPLLQDPAYLPEELGAL TQEPCQRAAETVLKQQGVLALRLY	
Protein/ mouse	QPQPQPPP	PEGR	SEQ. ID NO. 18

-continued

	Concat	Table 1C MetRS ^{N1} enated sequences based on		-	AARS		ides and alternative transcriptions:	pts
Type/		spec peptides detected	EQ. D. NO.	- 5	Name	Type/ species/ Resi- dues	Amino acid and Nucleic Acid Sequences	SEQ ID. NO.
Protein/ mouse	ECVVPFLT LLCGWEQI VQGKKGEI DTESLADI	PGSLPVLAAAARARGRAELLISTVGPE S PREKYPVLQLDSGNYLFSASAICRYFF N DDLTNQWLEWEATELQPVLSAALHCLV DILGPLRRVLTHIDHSLSRQNCPFLAG VULWGALYPLLQDPAYLPEELGALQSW PPCQRAAETVLKQQGVLALRLYLQKQP		10			TGGGGAGCCCTATACCCATTACTGCAAG ATCCCGCCTACCTCCCTGAGGAGCTGAG TGCCTGCACAGCTGGTTCCAGACACTG AGTACCCAGGAACCATGTCAGCGAGCT GCAGAGACTGTACTGAAACAGCAAGGT GTCCTGGCTCTCCGGCCTTACCTCCAAA AGCAGCCCCAGCCCAG	
		TABLE 2					AGGAGATTGCTATGGCTGTTACTGCTTG GGAGAAGGGCCTAGAAAGTTTGCCCC GCTGCGGCCCCAGCAGAATCCAGTGTTG	
AARS		ides and alternative transcr ified by Deep Sequencinq	ipts	2 0			CCTGTGGCTGGAGAAAGGAATGTGCTC ATCACCAGTGCCCTCCCTTACGTCAACA ATGTCCCCCACCTTGGGAACATCATTGG	
Name	Type/ species/ Resi- dues	Amino acid and Nucleic Acid Sequences	SEQ. ID. NO.	_ 25			TTGTGTGCTCAGTGCCGATGTCTTTGCC AGGTACTCTCGCCTCCGCCAGTGGAACA CCCTCTATCTGTGTGGGACAGATGAGTA TGGTACAGCAACAGAGACCAAGGGTCT GGAGGAGGGGCTAACCCCCCAGGAGAT CTGCGACAAGTACCACCATCATCCATGCT	
MetRS ^{N3}	Protein/ Human/ 1-67 + 48 aa	MRLFVSDGVPGCLPVLAAAGRARGRAE\ LISTVGPEDCVVPFLTRPKVPVLQLDSC YLFSTSAICRYSMSGLMPLLAICPSQPT QTSGRDGGRTQSKWTCISSWPKTMFLS1	EN ID. T NO.				GACATCTACCGCTGGTTTAACATTTCGT TTGATATTTTTGGTCGCACCACCTCC ACAGCAGACCAAAAGCCTCAGTGTAAA GTCTGCCGATCATGCCCTGTGGTGCAGT CGAGCCAGCACCTGTTTCTGGACCTGCC	
MetRS ^{N3}	DNA/ Human	ATGAGACTGTTCGTGAGTGATGCCGTCC CGGGTTGCTTGCCGGTGCTGCCCCC CGGGAGACCCCGGGCAGAGCAGA	ID. NO. 21	30	MetRS ^{N5}	Protein	TAAGCTGGAGAAGCGACTGGAGGAGTG GTTGGGGAGGACATTGCCTGGCAGTGA CTGGACACCCAATGCCCAGTTTATCACC CGTTCTTGGCTTCGGGATGGCCTCAAGC CACGCTGCATAA MRLFVSDGVPGCLPVLAAAGRARGRAEV	SEO
		GCAACTACCTCTTCTCCACTAGTGCAAT CTGCCGGTATTCTATTGTCTGGTTTGATC CCACTATTGGCTATCTGTCCATCACAG CAACTACACAGACCAGTGGAGAGATG GTGGAAGAACCCAGAGCAAGTGGACCT GTATCAGTTCATGGCCAAAGACAATGTT	2	35	Metrs	Human/ 1-513 +	LISTVGPEDCVVPFLTRPKVPVLQLDSGN YLFSTSAICRYFFLLSGWEQDDLTNQWLE WEATELQPALSAALYYLVVQGKKGEDVL GSVRRALTHIDHSLSRQNCPFLAGETESL ADIVLWGALYPLLQDPAYLPEELSALHSW FQTLSTQEPCQRAAETVLKQQGVLALRPY	ID. NO. 24
${ m Met}{ m R}{ m S}^{N4}$	Human/	CCTTTCCATAGCTTAG MRLFVSDGVPGCLPVLAAAGRARGRAE\ LISTVGPEDCVVPFLTRPKVPVLQLDSC YLFSTSAICRYFFLLSGWEQDDLTNQWI	N ID.	40			LQKQPQPSPAEGRAVTNEPEEELATLSE EEIAMAVTAWEKGLESLPPLRPQQNPVLP VAGERNVLITSALPYVNNVPHLGNIIGCV LSADVFARYSRLRQWNTLYLCGTDEYGTA	
	63 aa	WEATELOPALSAALYYLVVQCKKGEDVI SVRRALTHIDHSLSRQNCPFLAGETESI DIVLWGALYPLLQDPAYLPEELSALHSW QTLSTQEFCQRAAETVLKQQGVLALRFY QKQPQPSPAEGRAVTNEPEEEELATLSE EIAMAVTAWEKGLESLPPLRPQQNPVLF AGERNVLITSALPYVNNVPHLGNIIGCV	JG 22 JA VF VL CE VV	45			TETKALEEGLTPQEICDKYHIIHADIYRW FNISFDIFGRTTTPQQTKITQDIFQQLLK RGFVLQDTVEGLRCEHCARFLADRFVEGV CPFCGYEEARGDQCDKCGKLINAVELKKP QCKVCRSCPVVQSSQHLFLDLPKLEKRLE EWLGRTLPGSDWTPNAQFITRSWLRDGLK PRCITRDLKWGTPVPLEGFEDKVDLYQFM	
		SADVFARYSRLRQWNTLYLCGTDEYGTA ETKALEEGLTPQEICDKYHIIHADIYRW NISFDIFGRTTTPQQTKSLSVKSADHAL CSRASTCFWTCLSWRSDWRSGWGGHCLA TGHPMPSLSPVLGFGMASSHAA	'M 1E	50			AKDNVPFHSLVFPCSALGAEDNYTLVSHL IATEYLNYEDGKFSKSRGVGVFGDMAQDT GIPADIWRFYLLYIRPEGDSAFSWTDLL LKNNSELLNNLGNFINRAGMFVSKFFGGY VPEMVLTPDDQRLLAHVTLELQHYHQLLE KVRIRDALRSILTISRHGNQYIQVNEPWK	
MetRS ^{N4}	DNA/ Human	ATGAGACTGTTCGTGAGTGATGGCGTCCCGGGTTGCTTGC	ID. NO. 23	55			RIKGSEADRQRAGTVTGLAVNIAALLSVM LQPYMPTVSATIQAQLQLPPPACSILLTN FLCTLPAGHQIGTVSPLFQKLENDQIESL RQRFGGQQAKTSPKPAVVETVTTAKPQQI QALMDEVTKQGNIVRELKAQKADKNEVAA EVAKLLDLKKQLAVAEGKPPEAPKGKKKK	
		CTGCCGATATTTTTTTTTTTTTTTTTTCTGGCTGGAGCAAGATGACCTCACTTAACCAGTGGCTGCAAGACGACTGCAGCTGTACTATTTTTTTT		60	MetRS ^{N5}	DNA/ Human	ATGAGACTGTTCGTGAGTGATGGCGTCC CGGGTTGCTTGCCGGTGCTGGCCGCCG CGGGAGAGCCCGGGGCAGAGCAGA	SEQ ID. NO. 25
		CTGACTCACATTGACCACAGCTTGAGTC GTCAGAACTGTCCTTTCCTGGCTGGGGA GACAGAATCTCTAGCCGACATTGTTTTC	4	65			CTGCCGATATTTTTTTTTTTTTTTTTTTTTTTTGCT GGGAGCAAGATGACCTCACTAACCAGT	

TABLE 2-continued

		TABLE 2-continued				Ί.	TABLE 2-continued	
AARS polypeptides and alternative transcripts identified by Deep Sequencing			-	AARS polypeptides and alternative transcripts identified by Deep Sequencing				
ame	Type/ specie Resi- dues	s/ Amino acid and Nucleic Acid Sequences	SEQ. ID. NO.	5	Name	Type/ species, Resi- dues	/ SE Amino acid and ID Nucleic Acid Sequences NO	
		GGCTGGAATGGGAAGCGACAGAGCTGC AGCCAGCTTTGTCTGCTGCCCTGTACTA TTTAGTGGTCCAAGGCAAGAAGGGGGA AGATGTTCTTGGTTCAGTGCGGAGAGCC CTGACTCACATTGACCCACAGCTTGAGTC GTCAGAACTGTCCTTTCCTGGCTGGGGA GACAGAATCTCTAGCCGACATTGTTTTG		10			TATCCTGCTGACAAACTTCCTGTGTACC TTACCAGCAGGACACCCAGATTGGCACA GTCAGTCCCTTGTTCCAAAAATTGGAAA ATGACCAGATTGAAAGTTTAAGGCAGC GCTTTGGAGGGGGCCAGGCAAAAACGT CCCCGAAGCCAGCAGTTGTAGAGACTG TTACAACAGCCAAGCCA	
		TGGGGAGCCCTATACCCATTACTGCAAG ATCCCGCCTACCTCCTGAGGAGCTGAG TGCCCTGCACAGCTGGTTCCAGACACTG AGTACCCAGGAACCATGTCAGCGAGCT GCAGAGACTGTACTGAAACAGCAAGGT GTCCTGGCTCTCCGGCCTTACCTCCAAA AGCAGCCCCAGCCCAG		15			AAGCGCTGATGGATGAAGTGACAAAAC AAGGAAACATTGTCCGAGAACTGAAAG CACAAAAGGCAGACAAGAACGAGGTTG CTGCGGAGGTGGCGAAACTCTTGGATCT AAAGAAACAGTTGGCTGTAGCTGAGGG GAAACCCCCTGAAGCCCCTAAAGGCAA GAAGAAAAAGTAA	
		AGGAGGAGCTGGCTACCCTATCTGAGG AGGAGATTGCTATGGCTGTTACTGCTTG GGAGAAGGGCCTAGAAAGTTTGCCCCC GCTGCGGCCCCAGCAGAATCCAGTGTTG			MetRS ^{N6}	Human/	/ MRLFVSDGVPGCLPVLAAAGRARGRAEV SE LISTVGPEDCVVPFLTRPKVPVLQLDSGN ID YLFSTSAICRYFFLLSGWEQDDLTNQWLE NO WEATELQPALSAALYYLVVQGKKGEDVL 26	
		CCTGTGGCTGGAGAAAGGAATGTGCTC ATCACCAGTGCCCCTCCTTACGTCAACA ATGTCCCCCACCTTGGGAACATCATTGG TTGTGTGCTCAGTGCCGATGTCTTTGCC AGGTACTCTCGCCTCCGCCAGTGGAACA CCCTCTATCTGTGTGGGACAGATGAGTA TGGTACAGCAACAGAGACCAAGGCTCT		25			GSVRRALTHIDHSLSRQNCPFLAGETESL ADIVLWGALYPLLQDPAYLPEELSALHSW FQTLSTQEPCQRAAETVLKQQGVLALRPYL QKQPQPSPAGERAVTNEPEEEELATLSEEE IAMAVTAWEKGLESLPPLRPQQNPVLPVA GERNVLITSALPYVNNVPHLGNIIGCVLSA DVFARYSRLRQWNTLYLCGTDEVGTATE	
		GGAGGAGGACTAACCCCCCAGGAGAT CTGCGACAAGTACCACCATCATCCATGCT GACATCTACCGCTGGTTTAACATTTCGT TTGATATTTTTGGTCGCACCACCACTCC ACAGCAGACCAAAATCACCCAGGACAT TTTCCAGCAGTTGCTGAAACGAGGTTTT		30			TKALEEGLTPQEICDKYHIIHADIYRWFNI SFDIFGRTTTPQQTKITQDIFQQLLKRGFV LQDTVEQLRCEHCARFLADRFVEGVCPFC GYEEARGDQCDKCGKLINAVELKRQCK VCRSCPVVQSSQHLFLDLPKLEKRLEEWL GRTLPGSDWTPNAQFITRSWLRDGLKPRC	
		GTGCTGCAAGATACTGTGGAGCAACTG CGATGTGAGCACTGTGCTCGCTTCCTGG CTGACCGCTTCGTGGAGGGCGTGTGTCC		35			ITRDLKWGTPVPLEGFEDKVFYVWFDATI GYLSITANYTDQWERWWKNPEQST	
		CTTCTGTGGCTATGAGGAGGCTCGGGGT GACCAGTGTGACAAGTGTGGCAAGCTC ATCAATGCTGTCGAGCTTAAGAAGCCTC AGTGTAAAGTCTGCCGATCATGCCCTGT GGTGCAGTCGAGCCAGCACCTGTTTCTG		40	MetRS ^{N6}	DNA/ Human	ATGAGACTGTTCGTGAGTGATGGCGTCC SE CGGGTTGCTTGCCGGTGCTGCCGC ID CGGGAGAGCCCGGGGAGAGGAGAGAGAGAC GCTCATCAGCACTGTAGGCCCGGAAGA 27 TTGTGGTCCCGTTCCTGACCCGGCCT	
		GACCTGCCTAAGCTGGAGAAGCGACTG GAGGAGTGGTTGGGGAGACATTGCCT GGCAGTGACTGGACACCCAATGCCCAG TTTATCACCCGTTCTTGGCTTCGGGATG GCCTCAAGCCACGCTTCCATAACCCGAG					AAGGTCCCTGTCTTGCAGCTGGATAGCG GCAACTACCTCTTCTCCACTAGTGCAAT CTGCCGATATTTTTTTTTT	
		ACCTCAAATGGGGAACCCCTGTACCCTT AGAAGGTTTTGAAGACAAGGTGGACCT GTATCAGTTCATGGCCAAAGACAATGTT CCTTTCCATAGCTTAGTCTTTCCTTGCTC AGCCCTAGGAGCTGAAGGATAACTATAC	:	45			AGCCAGCTTTGTCTGCTGCCCTGTACTA TTTAGTGGTCCAAGGCAAGAAGGGGGA AGATGTTCTTGGTTCAGTGCGGAGAGCC CTGACTCACATTGACCACAGCTTGAGTC GTCAGAACTGTCCTTTCCTGGCTGGGA	
		CTTGGTCAGCCACCTCATTGCTACAGAG TACCTGAACTATGAGGATGGGAAATTCT CTAAGAGCCGCGGTGTTGGAGTGTTTTG GGGACATGGCCCAGGACACGGGATCC CTGCTGACATCTGGCGCTTCTATCTGCT GTACATTCGGCCCTGAGGCCAGGACAG		50			GACAGAATCTCTAGCCGACATTGTTTTG TGGGGAGCCCTATACCCCATTACTGCAAG ATCCCGCCTACCCTCCCTGAGGAGCTGAG TGCCCTGCACAGCTGGTTCCAGACACTG AGTACCCAGGAACCATGTCAGCGAGGCT GCAGAGACTGTACTGAAACAGCAAGGT	
		TGCTTTCTCCTGGACGGACCTGCTGCTG AAGAATAATTCTGAGCTGCTTAACAACC TGGGCAACTTCATCAACAGAGCTGGGA TGTTTGTGTCTAAGTTCTTTGGGGGCTA TGTGCCTGAGATGGTCCACCCCTGAT GATCAGCGCCTGCTGGCCCATGTCACCC		55			GTCCTGGCTCTCCGGCCTTACCTCCAAA AGCAGCCCCAGCCCAG	
		TGGAGCTCCAGCACTATCACCAGCTACT TGAGAAGGTTCGGATCCGGGATGCCTTG CGCAGTATCCTCACCATATCTCGACATG GCAACCAATATATTCAGGTGAATGAGC CCTGGAAGCGGATTAAAGGCAGTGAGG CTGACAGGCAACGGGCAGGAACAGTGA CTGGCTTGGCAGTGAATTAATAGCTGCCTT		60			GCTGCGGCCCCAGCAGAATCCAGTGTTG CCTGTGGCTGGAGAAAGGAATGTGCTC ATCACCAGTGCCCTCCCTTACGTCAACA ATGTCCCCCACCTTGGGAACATCATTGG TTGTGTGCTCAGTGCGATGTCTTTGCC AGGTACTCTCGCCTCCGCCAGTGGAACA CCCTCTATCTGTGGGAACAGATGAGTA	
		GCTCTCTGTCATGCTTCAGCCTTACATG CCCACGGTTAGTGCCACAATCCAGGCCC AGCTGCAGCTCCCACCTCCAGCCTGCAG		65			TGGTACAGCAACAGAGACCAAGGCTCT GGAGGAGGACTAACCCCCCAGGAGAT CTGCGACAAGTACCACCATCATCCATGCT	

AARS		tides and alternative transcrip	pts	•	AARS		ides and alternative transcrip	pts
Name	Type/ species/ Resi- dues		SEQ. ID. NO.	. 5	Name	Type/ species/ Resi- dues		SEQ ID. NO.
		GACATCTACCGCTGGTTTAACATTTCGT TTGATATTTTTGGTCGCACCACCACTCC ACAGCAGACCAAAATCACCACGGACAT TTTCCAGCAGTTGCTGAAACGAGGTTTT		10			GTCCTGGCTCTCCGGCCTTACCTCCAAA AGCAGCCCCAGCCCAG	
		GTGCTGCAAGATACTGTGGAGCAACTG CGATGTGAGCACTGTGCTCGCTTCCTGG CTGACCGCTTCGTGGAGGGCGTGTGTCC CTTCTGTGGCTATGAGGAGGCTCGGGGT		15			AGGAGATTGCTATGGCTGTTACTGCTTG GGAGAAGGGCCTAGAAAGTTTGCCCCC GCTGCGGCCCCAGCAGAATCCAGTGTTG CCTGTGGCTGGAGAAAGGAATGTGCTC	
		GACCAGTGTGACAAGTGTGGCAAGCTC ATCAATGCTGTCGAGCTTAAGAAGCCTC AGTGTAAAGTCTGCCGATCATCCCTGT GGTGCAGTCGAGCCAGCACCTGTTTCTG		13			ATCACCAGTGCCCTCCCTTACGTCAACA ATGTCCCCCACCTTGGGAACATCATTGG TTGTGTGCTCAGTGCCGATGTCTTTGCC AGGTACTCTCCGCCTCCGCCGTGGAACA CCCTCTTTTCCCTCCCACACACACACACACACACA	
		GACCTGCCTAAGCTGGAGAAGCGACTG GACAGGAGTGGTTGGGGAGACATTGCCT GGCAGTGACTGGACACCCAATGCCCAG TTTATCACCCGTTCTTGGCTTCGGGATG		20			CCCTCTATCTGTGTGGGACAGATTA TGGTACAGCAACAGAGACCAAGGCTCT GGAGGAGGACTAACCCCCCAGGAGAT CTGCGACAAGTACCACATCATCCATGCT	
		GCCTCAAGCCACGCTGCATAACCCGAG ACCTCAAATGGGGAACCCCTGTACCCTT AGAAGGTTTTGAAGACAAGGTATTCTAT GTCTGGTTTGATGCCACTATTGGCTATC					GACATCTACCGCTGGTTTAACATTTCGT TTGATATTTTTGGTCGCACCACCACTCC ACAGCAGACCAAAATCACCCAGGACAT TTTCCAGCAGTTGCTGAAACGAGGTTTT	
		TGTCCATCACAGCCAACTACACAGACCA GTGGGAGAGATGGTGGAAGAACCCAGA GCAAAGTACCTGA		25			GTGCTGCAAGATACTGTGGAGCAACTG CGATGTGAGCACTGTGCTCGCTTCCTGG CTGACCGCTTCGTGGAGGGCGTGTGTCC	
etRS ^{N7}	Human/	MRLFVSDGVPGCLPVLAAAGRARGRAEV LISTVGPEDCVVPFLTRPKVPVLQLDSGN YLFSTSAICRYFFLLSGWEQDDLTNQWLE	NO.	30			CTTCTGTGGCTATGAGGAGGCTCGGGGT GACCAGTGTGACAAGTGTGGCAAGCTC ATCAATGCTGTCGAGCTTAAGAAGCCTC AGTGTAAAGTCTGCCGATCATGCCCTGT	
	15 aa	WEATELQPALSAALYYLVVQGKKGEDVLG SVRRALTHIDHSLSRQNCPFLAGETESLA DIVLWGALYPLLQDPAYLPEELSALHSWF QTLSTQEPCQRAAETVLKQQGVLALRPYL	28				GGTGCAGTCGAGCCAGCACCTGTTTCTG GACCTGCCTAAGCTGGAGAAGCGACTG GAGGAGTGGTTGGGGAGACATTGCCT GGCAGTGACTGGACACCCAATGCCCAG	
		QKQPQPSPABGRAVTNEPEEEELATLSEE EIAMAVTAWEKGLESLPPLRPQQNPVLPV AGERNVLITSALPYVNNVPHLGNIIGCVL SADVFARYSRLRQWNTLYLGGTDEYGTAT		35			TTTATCACCCGTTCTTGGCTTCGGATG GCCTCAAGCCACGCTGCATAACCCAG ACCTCAAATGGGGAACCCCTGTACCCTT AGAAGGTTTTGAAGACAAGGTATTCTAT	
		ETKALEEGLTPQEICDKYHIIHADIYRWF NISFDIFGRTTTPQQTKITQDIFQQLLKR GFVLQDTVEQLRCEHCARFLADRFVEGVC PFCGYEEARGDQCDKCGKLINAVELKKPQ CKVCRSCPVVOSSOHLFLDLPKLEKRLEE		40			GTCTGGTTTGATGCCACTATTGGCTATC TGTCCATCACAGCCACCACCCAGACCA GTGGAGAGATGGTGGAAGAACCCAGA GCAAGTGGACCTGTATCAGTTCATGCC AAAGACCATGTTCCTTTCCATTAGCTTAG	
		WLGRTLPGSDWTPNAQFITRSWLRDGLKP RCITRDLKWGTPVPLEGFEDKVFYVWFDA TIGYLSITANYTDQWERWWKNPEQVDLYQ FMAKDNVPFHSLVFPCSALGAEDNYTLVS HLIATEYLNYEDGKFSKSRGYGVFGDMA					TCTTTCCTTGCTCAGCCCTAGGAGCTGA GGATAACTATACCTTGGTCAGCCACCTC ATTGCTACAGAGTACCTGAACTATGAGG ATGGGAAATTCTCTAAGAGCCGCGGTGT GGGAGTGTTTGGGGACATGGCCCAGGA	
		QDTGIPADIWRFYLLYIRPEGQDSAFSWT DLLLKNNSELLNNLGNFINRAGMFVSKFF GGYVPEMVLTPDDQRLLAHVTLELQHYH QLLEKVRIRDALRSILTISRHGNQYIQV		45			CACGGGGATCCCTGCTGACATCTGGCGC TTCTATCTGCTGTACATTCGGCCTGAGG GCCAGGACAGTGCTTTCTCCTGGACGGA CCTGCTGCTGAAGAATAATTCTGAGCTG	
\mathtt{etRS}^{N7}	DNA/ Human	NEPWKRIKGSEADRSVPCSKNWKMTRLKV ATGAGACTGTTCGTGAGTGATGGCGTCC CGGGTTGCTTGCCGGTGCTGGCCGCCGC	SEQ.	50			CTTAACAACCTGGGCAACTTCATCAACA GAGCTGGGATGTTTGTGTCTAAGTTCTT TGGGGGCTATGTGCCTGAGATGGTGCTC ACCCTGATGATCAGCGCCTGCTGGCCC	
		CGGGAGAGCCCGGGGCAGAGCAGAGT GCTCATCAGCACTGTAGGCCCGGAAGA TTGTGTGGTCCCGTTCCTGACCCGGCCT AAGGTCCCTGTCTTGCAGCTGGATAGCG	NO. 29				ATGTCACCCTGGAGCTCCAGCACTATCA CCAGCTACTTGAGAAGGTTCGGATCCGG GATGCCTTGCGCAGTATCCTCACCATAT CTCGACATGGCAACCAATATATTCAGGT	
		GCAACTACCTCTTCTCCACTAGTGCAAT CTGCCGATATTTTTTTTTT		55			GAATGAGCCCTGGAAGCGGATTAAAGG CAGTGAGGCTGACAGGTCAGTCCCTTGT TCCAAAAATTGGAAAATGACCAGATTG AAAGTTTAA	
		AGCCAGCTTTGTCTGCTGCCCTGTACTA TTTAGTGGTCCAAGGCAAGAAGGGGGA AGATGTTCTTGGTTCAGTGCGGAGAGCC		60	${\tt MetRS}^{N8}$	Human/	MRLFVSDGVPGCLPVLAAAGRARGRAEV LISTVGPEDCVVPFLTRPKVPVLQLDSGN	
		CTGACTCACATTGACCACAGCTTGAGTC GTCAGAACTGTCCTTTCCTGGCTGGGGA GACAGAATCTCTAGCCGACATTGTTTTG TGGGGAGCCCTATACCCATTACTGCAAG ATCCCGCCTACCTCCTGAGGAGCTGAG					YLFSTSAICRYFFLLSGWEQDDLTNOWLE WEATELQPALSAALYYLVVQGKKGEDVLG SVRRALTHIDHSLSRQNCPFLAGETESLA DIVLWGALYPLLQDPAYLPEELSALHSWF QTLSTQEPCQRAAETVLKQQGVLALRPYL	30
		TGCCCTGCACAGCTGGTTCCAGACACTG AGTACCCAGGAACCATGTCAGCGAGCT GCAGAGACTGTACTGAAACAGCAAGGT		65			QKQPQPSPAEGRAVTNEPEEEELATLSEE EIAMAVTAWEKGLESLPPLRPQQNPVLPV AGERNVLITSALPYVNNVPHLGNIIGCVL	

TABLE 2-continued					TABLE 2-continued				
AARS polypeptides and alternative transcripts identified by Deep Sequencing					AARS polypeptides and alternative transcripts identified by Deep Sequencing				
	Type/		SEQ.	5		Type/ species/		SEQ.	
Name	Resi- dues	Amino acid and Nucleic Acid Sequences	ID. NO.		Name	Resi- dues	Amino acid and Nucleic Acid Sequences	ID. NO.	
		SADVFARYSRLRQWNTLYLCGTDEYGTAT ETKALEEGLTPQEICDKYHIIHADIYRWF NISFDIFGRTTTPQQTKITQDIFQQLLKR GFVLQDTVEQLRCEHCARPLADRFVEGVC PFCGYEEARGDQCDKCGKLINAVELKKPQ CKVCRSCPVVQSSQHLFLDLPKLEKRLEE WLGRTLPGSDWTPNAQFITRSWLRDGLKP RCITRDLKWGTPVPLEGFEDKVFYVWFDA TIGYLSITANYTDQWERWWKNPEQVDLYQ FMAKDNVPFHSLVFPCSALGAEDNYTLVS HLIATEYLNYEDGKFSKSRGVGVFGDMA QDTGIPADIWRFYLLYIRPEGQDSAFSWT DLLLKNNSELLNNLGNFINRAGMFVSKFF GGYVPEWVLTPDDQRLAHVTLELQHYH QLLEKVRIRDALRSILTISRHGNQYIQVN EPWKRIKGSEADRQRAGTVTGLAVNIAAL LSVMLQPYMPTVSATIQAQLQLPPPACSI LLTNFLCTLPAGHQIGTVSPLFQKLENDQ IESLRQRFGGGQCNIVRELKAQKADKNEV		10 15 20			GAGGAGTGGTTGGGGAGGACATTGCCT GGCAGTGACTGGACACCCAATGCCCAG TTTATCACCCGTTCTTGGCTTCGGGATG GCCTCAAGCCACGCTGCATAACCCGAG ACCTCAAATGGGGAACCCCTGTACCCTT AGAAGGTTTTGAAGACAAGGTATTCTAT GTCTGGTTTGATTGCCACTATTGGCTATC TGTCCATCACAGCCAACTACACAGACCA GCAAGTGGACCTGTATCCATGCCTAG GCAAGTGGACCTGTATCATTCATTGGTTATC TCTTTCCTTGCTTATCCATTAGCTTAG TCTTTCCTTGCTCTAGCACTAGACCACAAAGACAAATGTCCATCAGACCCACTC AAAGACAATGTTCCTTCCATCAGCACTGA GGATAACTATACCTTGGTCAGCCACCTC ATTGCTACAGAGTACCTTGAACTATAGAGG ATGGGAAATTCTCTAAGAGCCCAGGA CACGGGATCCCTGCTAGCACTCTGGCCCAGGA CACGGGATCCCTGTACATTCGGCCTGAGG CCCAGGACAGTGCTTTCTCCTGGACGGG GCCAGGACAGTGCTTTCTCCTGGACGGG		
		AAEVAKLLDLKKQLAVAEGKPPEAPKGKK		25			CCTGCTGCTGAAGAATAATTCTGAGCTG		
MetRS ^{N8}	DNA/ Human	ATGAGACTGTTCGTGAGTGATGGCGTCC CGGGTTGCTTGCCGGGTGCTGGCCGCCGC CGGGAGAGCCCGGGCAGAGCAGA	SEQ. ID. NO. 31	30 35 40	MetRS ^{N12}	Protein/ Human/ 1-67 +	CTTAACAACCTGGGCAACTTCATCAACA GAGCTGGGATGTTTGTGTCTAAGTTCTT TGGGGGCTATGTGCCTGAGATGGTCC ATGTCACCCTGGAGCTCCAGCACTATCA CCAGCTACTTGAGAAGGTTCGGATCCGG GATGCCTTGCGCAGCATTCACCATAT CCAGCTACTTGAGAAGGTTCCGACATAT CTCGACATGGCAACCAATATATTCAGGT GAATGAGCCCTGGAACCGAATAATTCAGGT GAATGAGCCCTGGAACCGAATAATATCAGGT AACAGTGACTGCACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC	ID. NO.	
		GCTGCGGCCCCAGCAGAATCCAGTGTTG CCTGTGGCTGGAGAAAGGAATGTGCTC ATCACCAGTGCCCTCCCTTACGTCAACA ATGTCCCCCACCTTGGGAACATCATTGG TTGTGTGCTCAGTGCCGATGTCTTTGCC AGGTACTCTCGCCTCCGCCAGTGGAACA CCCTCTATCTGTGTGGACAGATCAT TGGTACAGCAACAGAGCTCT GGAGGAGGGACTAACCCCCCAGGAGAT CTGCGACAAGTACCACCATCCATGCT GACATCTACCGCTGGTTTAACATTTCGT TTGATATTTTTGGTCGCACCACCACTCC ACAGCAGACCAAAATCACCCAGGACAT TTTCCAGCAGTTCGTGAAACGAGGTTTT GTGCTGCAAGATACTGTGGAGCAACTG CGATGCGAGCATCTGTGCTGCTTCCTGG		50 55 60	MetRS ^{N12}	Human	SASCRDCTETARCPGSPALPPKAAPAQPR ATGAGACTGTTCGTGAGTGATGGCGTCC CGGGTTGCTTGCCGGTCTGGCCGCCGC CGGGAGAGCCCGGGGCAGAGCAGA	SEQ. ID. NO. 33	
		CTGACCGCTTCGTGGAGGGCGTGTGTCC CTTCTGTGGCTATGAGGAGGCTCGGGGT GACCAGTGTGACAAGTGTGGCAAGCTC ATCAATGCTGTCGAGCTTAAGAAGCCTC AGTGTAAAGTCTGCCGATCATGCCCTGT GGTGCAGTCGAGCCAGCACCTGTTTCTG GACCTGCCTAAGCTGGAGAAGCGACTG		65	MetkS ⁽¹¹³	Human/	MRLFVSDGVPGCLPVLAAAGRARGRAEV LISTVGPEDCVVPFLTRPKVPVLQLDSGN YLFSTSAICRYFFLLSGWEQDDLTNQWLE WEATELQPALSAALYYLVVQGKKGEDVLG SVRRALTHIDHSLSRQNCPFLAGETESLA DIVLWGALYPLLQDPAYLPEELSALHSWF QTLSTQEPCQRAAETVLKQQGVLALRPYL	NO.	

TABLE 2-continued

	Type/	,		5		Type/		~=~
	species/ Resi-	Amino acid and	SEQ. ID.			species/ Resi-	Amino acid and	SEÇ
Name	dues	Nucleic Acid Sequences	NO.		Name	dues	Nucleic Acid Sequences	NO.
		QKQPQPSPAEGRAVTNEPEVACGWRKEC		•			GGAGAAGGGCCTAGAAAGTTTGCCCCC	
		AHHQCPPLRQQCPPPWEHHWLCAQCRCL		10			GCTGCGGCCCCAGCAGAATCCAGTGTG	
		CQVLSPPPVEHPLSVWDR					GACCTGTATCAGTTCATGGCCAAAGACA	
MetRS N13	DNA/	ATGAGACTGTTCGTGAGTGATGGCGTCC	SEQ.				ATGTTCCTTTCCATAGCTTAG	
netra	Human	CGGGTTGCTTGCCGGTGCTGGCCGCCGC	ID.		\mathtt{MetRS}^{N15}	Protein/	MRLFVSDGVPGCLPVLAAAGRARGRAEV	SEC
		CGGGAGAGCCCGGGGCAGAGCAGAGGT	NO.			Human/	LISTVGPEDCVVPFLTRPKVPVLQLDSGN	-
		GCTCATCAGCACTGTAGGCCCGGAAGA	35	15			YLFSTSAICRYFFLLSGWEQDDLTNQWLE	
		TTGTGTGGTCCCGTTCCTGACCCGGCCT AAGGTCCCTGTCTTGCAGCTGGATAGCG				822-900	WEATELQPALSAALYYLVVQGKKGEDVLG SVRRALTHIDHSLSRQNCPFLAGETESLA	
		GCAACTACCTCTTCTCCACTAGTGCAAT					DIVLWGALYPLLQDPAYLPEELSALHSWF	
		CTGCCGATATTTTTTTTTTTTTTTTTTTTTTTTTTTTTT					QTLSTQEPCQRAAETVLKQQGVLALRPYL	
		GGGAGCAAGATGACCTCACTAACCAGT GGCTGGAATGGGAAGCGACAGAGCTGC					QKQPQPSPAEGRAVTNEPEEEELATLSEE	
		AGCCAGCTTTGTCTGCTGCCCTGTACTA		20			EIAMAVTAWEKGLESLPPLRPQQNPVLPV AGERNVLITSALPYVNNVPHLGNIIGCVL	
		TTTAGTGGTCCAAGGCAAGAAGGGGGA					SADVFARYSRLRQWNTLYLCGTDEYGTAT	
		AGATGTTCTTGGTTCAGTGCGGAGAGCC					ETKALEEGLTPQEICDKYHIIHADIYRWF	
		CTGACTCACATTGACCACAGCTTGAGTC GTCAGAACTGTCCTTTCCTGGCTGGGGA					NISFDIFGRTTTPQQTKITQDIFQQLLKR GFVLQDTVEQLRCEHCARFLADRFVEGVC	
		GACAGAATCTCTAGCCGACATTGTTTTG					PFCGYEEARGDQCDKCGKLINAVELKKPQ	
		TGGGGAGCCCTATACCCATTACTGCAAG		25			${\tt CKVCRSCPVVQSSQHLFLDLPKLEKRLEE}$	
		ATCCCGCCTACCTCCCTGAGGAGCTGAG TGCCCTGCACAGCTGGTTCCAGACACTG					WLGRTLPGSDWTPNAQFITRSWLRDGLKP RCITRDLKWGTPVPLEGFEDKVFYVWFDA	
		AGTACCCAGGAACCATGTCAGCGAGCT					TIGYLSITANYTDQWERWWKNPEQVDLYQ	
		GCAGAGACTGTACTGAAACAGCAAGGT					FMAKDNVPFHSLVFPCSALGAEDNYTLVS	
		GTCCTGGCTCTCCGGCCTTACCTCCAAA					HLIATEYLNYEDGKFSKSRGVGVFGDMA	
		AGCAGCCCAGCCCAGCCCGCTGAGG GAAGGGCTGTCACCAATGAGCCTGAGG		30			QDTGIPADIWRFYLLYIRPEGQDSAFSWT DLLLKNNSELLNNLGNFINRAGMFVSKFF	
		TTGCCTGTGGCTGGAGAAAGGAATGTG					GGYVPEMVLTPDDQRLLAHVTLELQHYHQ	
		CTCATCACCAGTGCCCTCCCTTACGTCA					LLEKVRIRDALRSILTISRHGNQYIQVNE	
		ACAATGTCCCCCACCTTGGGAACATCAT					PWKRIKGSEADRQRAGTVTGLAVNIAALL	
		TGGTTGTGTGCTCAGTGCCGATGTCTTT GCCAGGTACTCTCGCCTCCGCCAGTGGA		2.5			SVMLQPYMPTVSATIQAQLQLPPPACSIL LTNFLCTLPAGHQIGTAKTSPKPAVVETV	
		ACACCCTCTATCTGTGTGGGACAGATGA		35			TTAKPQQIQALMDEVTKQGNIVRELKAQ	
aN14							KADKNEVAAEVAKLLDLKKQLAVAEGK	
MetRS	Protein/ Human/	MRLFVSDGVPGCLPVLAAAGRARGRAEV LISTVGPEDCVVPFLTRPKVPVLQLDSGN	SEQ. ID				PPEAPKGKKKK	
		YLFSTSAICRYFFLLSGWEQDDLTNQWLE			${\tt MetRS}^{N15}$	DNA/	ATGAGACTGTTCGTGAGTGATGGCGTCC	SEÇ
	16 aa	WEATELQPALSAALYYLVVQGKKGEDVLG	36	40		Human	CGGGTTGCTTGCCGGTGCTGGCCGCCGC	ID.
		SVRRALTHIDHSLSRQNCPFLAGETESLA DIVLWGALYPLLQDPAYLPEELSALHSWF					CGGGAGAGCCCGGGGCAGAGCAGAGGT GCTCATCAGCACTGTAGGCCCGGAAGA	NO.
		QTLSTQEPCQRAAETVLKQQGVLALRPYL					TTGTGTGGTCCCGTTCCTGACCCGGCCT	33
		${\tt QKQPQPSPAEGRAVTNEPEEEELATLSEE}$					AAGGTCCCTGTCTTGCAGCTGGATAGCG	
		EIAMAVTAWEKGLESLPPLRPQQNPVWTC					GCAACTACCTCTTCTCCACTAGTGCAAT	
		ISSWPKTMFLSIA		45			CTGCCGATATTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	
\mathtt{MetRS}^{N14}	DNA/	ATGAGACTGTTCGTGAGTGATGGCGTCC	SEQ.				GGCTGGAATGGGAAGCGACAGAGCTGC	
	Human	CGGGTTGCTTGCCGGTGCTGGCCGCCGC	ID.				AGCCAGCTTTGTCTGCTGCCCTGTACTA	
		CGGGAGAGCCCGGGGCAGAGCAGAGGT GCTCATCAGCACTGTAGGCCCGGAAGA	NO. 37				TTTAGTGGTCCAAGGCAAGAAGGGGGA AGATGTTCTTGGTTCAGTGCGGAGAGCC	
		TTGTGTGGTCCCGTTCCTGACCCGGCCT	5,				CTGACTCACATTGACCACAGCTTGAGTC	
		AAGGTCCCTGTCTTGCAGCTGGATAGCG		50			GTCAGAACTGTCCTTTCCTGGCTGGGGA	
		GCAACTACCTCTTCTCCACTAGTGCAAT					GACAGAATCTCTAGCCGACATTGTTTTG	
		CTGCCGATATTTTTTTTTTTTTTTTTTTTTTTTTTTTTT					TGGGGAGCCCTATACCCATTACTGCAAG ATCCCGCCTACCTCCCTGAGGAGCTGAG	
		GGCTGGAATGGGAAGCGACAGAGCTGC					TGCCCTGCACAGCTGGTTCCAGACACTG	
		AGCCAGCTTTGTCTGCTGCCCTGTACTA					AGTACCCAGGAACCATGTCAGCGAGCT	
		TTTAGTGGTCCAAGGCAAGAAGGGGGA AGATGTTCTTGGTTCAGTGCGGAGAGCC		55			GCAGAGACTGTACTGAAACAGCAAGGT GTCCTGGCTCTCCGGCCTTACCTCCAAA	
		CTGACTCACATTGACCACAGCTTGAGTC					AGCAGCCCAGCCCAGCCCGCTGAGG	
		GTCAGAACTGTCCTTTCCTGGCTGGGGA					GAAGGGCTGTCACCAATGAGCCTGAGG	
		GACAGAATCTCTAGCCGACATTGTTTTG					AGGAGGAGCTGGCTACCCTATCTGAGG	
		TGGGGAGCCCTATACCCATTACTGCAAG ATCCCGCCTACCTCCCTGAGGAGCTGAG					AGGAGATTGCTATGGCTGTTACTGCTTG GGAGAAGGGCCTAGAAAGTTTGCCCCC	
		TGCCCTGCACAGCTGGTTCCAGACACTG		60			GCTGCGGCCCCAGCAGAATCCAGTGTTG	
		AGTACCCAGGAACCATGTCAGCGAGCT					CCTGTGGCTGGAGAAAGGAATGTGCTC	
		GCAGAGACTGTACTGAAACAGCAAGGT					ATCACCAGTGCCCTCCCTTACGTCAACA	
		GTCCTGGCTCTCCGGCCTTACCTCCAAA AGCAGCCCAGCC					ATGTCCCCCACCTTGGGAACATCATTGG TTGTGTGCTCAGTGCCGATGTCTTTGCC	
		GAAGGCCCCAGCCCAGCCCGCTGAGG GAAGGGCTGTCACCAATGAGCCTGAGG					AGGTACTCTCGCCTCCGCCAGTGGAACA	
		AGGAGGAGCTGGCTACCCTATCTGAGG		65			CCCTCTATCTGTGTGGGACAGATGAGTA	
		AGGAGATTGCTATGGCTGTTACTGCTTG					TGGTACAGCAACAGAGACCAAGGCTCT	

34 TABLE 2B

TABLE 2-continued				TABLE 2B					
AARS polypeptides and alternative transcripts			•		AARS polypeptides unique splice junctions				
	ident Type/ species,	cified by Deep Sequencing	SEQ.	5	Name	Type/	Amino acid and Nucleic Acid Sequences in the vicinity of the unique splice junction	SEQ.	
Name	Resi- dues	Amino acid and Nucleic Acid Sequences	ID. NO.		M1- AS01	DNA/ Human/	TCTTCTCCACTAGTGCAATCTGCCG GTA	SEQ.	
		GGAGGAGGACTAACCCCCCAGGAGAT CTGCGACAAGTACCACATCATCCATGCT GACATCTACCGCTGGTTTAACATTTCGT TTGATATTTTTGGTCGCACCACCACTCC		10		Protein/ Human/	FSTSAICRYSMSGLMP	NO. SEQ. ID. NO.	
		ACAGCAGACCAAAATCACCCAGGACAT TTTCCAGCAGTTGCTGAAACGAGGTTTT GTGCTGCAAGATACTGTGGAGCAACTG		15	M1- AS06	DNA/ Human/	GCACCACCACTCCACAGCAGACCAA AA GCCTCAGTGTAAAGTCTGCCGAT	SEQ. ID. NO.	
		CGATGTGAGCACTGTGCTCGCTTCCTGG CTGACCGCTTCGTGGAGGGCGTGTGTCC CTTCTGTGGCTATGAGGAGGCTCGGGGT				Protein/ Human/	TTTPQQTKSLSVKSAD	SEQ. ID. NO.	
		GACCAGTGTGACAAGTGTGGCAAGCTC ATCAATGCTGTCGAGCTTAAGAAGCCTC AGTGTAAAGTCTGCCGATCATGCCCTGT GGTGCAGTCGAGCCAGCACCTGTTTCTG		20	M1- AS07	DNA/ Human/	ACCCTTAGAAGGTTTTGAAGACAAG GT GGACCTGTATCAGTTCATGGCCA	SEQ. ID. NO.	44
		GACCTGCCTAAGCTGGAGAAGCGACTG GAGGAGTGGTTGGGGAGACATTGCCT GGCAGTGACTGGACACCCAATGCCCAG		2.5		Human/	PLEGFEDKVDLYQFMA	SEQ. ID. NO.	45
		TTTATCACCCGTTCTTGGCTTCGGGATG GCCTCAAGCCACGCTGCATAACCCGAG ACCTCAAATGGGGAACCCCTGTACCCTT		25	M1- AS08	DNA/ Human/	GAGATGGTGGAAGAACCCAGAGCAA A GTACCTGAACTATGAGGATGGGAA RWWKNPEQST	SEQ. ID. NO. SEQ.	46
		AGAAGGTTTTGAAGACAAGGTATTCTAT GTCTGGTTTGATGCCACTATTGGCTATC TGTCCATCACAGCCAACTACACAGACCA		30		Human/	Nimited Ego I	ID. NO.	
		GTGGGAGAGATGGTGGAAGAACCCAGA GCAAGTGGACCTGTATCAGTTCATGGCC AAAGACAATGTTCCTTTCCATAGCTTAG TCTTTCCTTGCTCAGCCCTAGGAGCTGA			M1- AS09	DNA/ Human/	GGATTAAAGGCAGTGAGGCTGACAG GT CAGTCCCTTGTTCCAAAAATTGG	SEQ. ID. NO.	48
		GGATAACTATACCTTGGTCAGCCACCTC ATTGCTACAGAGTACCTGAACTATGAGG ATGGGAAATTCTCTAAGAGCCGCGGTGT		35		Human/	IKGSEADRSVPCSKNW	SEQ. ID. NO.	
		GGGAGTGTTTGGGGACATGGCCCAGGA CACGGGGATCCCTGCTGACATCTGGCGC TTCTATCTGCTGTACATTCGGCCTGAGG			M1- AS10	DNA/ Human/	AAGGCAGCGCTTTGGAGGGGGCCAG GG AAACATTGTCCGAGAACTGAAAG	SEQ. ID. NO.	50
		GCCAGGACAGTGCTTTCTCCTGGACGGA CCTGCTGCTGAAGAATAATTCTGAGCTG CTTAACAACCTGGGCAACTTCATCAACA GAGCTGGGATGTTTGTCTAAGTTCTT		40		Human/	RQRFGGGQGNIVRELK	SEQ. ID. NO.	
		TGGGGGCTATGTGCTGAGATGGTGCTC ACCCTGATGATCAGCGCCTGCTGGCCC ATGTCACCCTGGAGCTCCAGCACTATCA		45	M1- AS13	DNA/ Human/	TCTTCTCCACTAGTGCAATCTGCCG AGG	ID. NO.	52
		CCAGCTACTTGAGAAGGTTCGGATCCGG GATGCCTTGCGCAGTATCCTCACCATAT CTCGACATGGCAACCAATATATTCAGGT				Human/	FSTSAICRGAECPAQL	SEQ. ID. NO.	
		GAATGAGCCCTGGAAGCGGATTAAAGG CAGTGAGGCTGACAGGCAACGGGCAGG AACAGTGACTGGCTTGGCAGTGAATAT		50	M1- AS14	Human/	AAGGGCTGTCACCAATGAGCCTGAG GT TGCCTGTGGCTGGAGAAAGGAAT	SEQ. ID. NO.	54
		AGCTGCCTTGCTCTGTCATGCTTCAG CCTTACATGCCCACGGTTAGTGCCACAA TCCAGGCCCAGCTGCAGCTCCCACCTCC				Protein/ Human/	RAVTNEPEVACGWRKE	SEQ. ID. NO.	
		AGCCTGCAGTATCCTGCTGACAAACTTC CTGTGTACCTTACCAGCAGGACACCAGA TTGGCACAGCAAAAACGTCCCCGAAGC CACCAGCTTCTACAACACCTCTTAGAACAC		55	M1- AS15	Human/	CGCTGCGGCCCCAGCAGAATCCAGT GT GGACCTGTATCAGTTCATGGCCA	SEQ. ID. NO.	56
		CAGCAGTTGTAGAGACTGTTACAACAG CCAAGCCACAGCAGATACAAGCGCTGA TGGATGAAGTGACAAAACAAGGAAACA TTGTCCGAGAACTGAAAGCACAAAAGG		60		Protein/ Human/	LRPQQNPVWTCISSWP	SEQ. ID. NO.	
		CAGACAAGAACGAGGTTGCTGCGGAGG TGGCGAAACTCTTGGATCTAAAGAAAC			M1- AS18	Human/	ACCAGCAGGACACCAGATTGGCACA GC AAAAACGTCCCCGAAGCCAGCAG	SEQ. ID. NO.	58
		AGTTGGCTGTAGCTGAGGGGAAACCCC CTGAAGCCCCTAAAGGCAAGAAGAAA AGTAA		65		Protein/ Human/	PAGHQIGTAKTSPKPA	SEQ. ID. NO.	

BLE 3-continued

36

		TABLE 3				Т	ABLE 3-continued		
		ypeptides and nucleic acids tified by Bioinformatics			AARS polypeptides and nucleic acids identified by Bioinformatics				
Name		Amino acid and Nucleic Acid Sequences	SEQ. ID. NO.	5	Name	_	Amino acid and Nucleic Acid Sequences	SEQ. ID. NO.	
MetRS ^{N2}	Protein, Human/ 1-263	MRLFVSDGVPGCLPVLAAAGRARGRAEV LISTVGPEDCVVPFLTRPKVPVLQLDSGN YLFSTSAICRYFFLLSGWEQDDLTNQWLE WEATELQPALSAALYYLVVQGKKGEDVLG SVRRALTHIDHSLSRQNCPFLAGETESLA DIVLWGALYPLLQDPAYLPEELSALHSWF QTLSTQEPCQRAAETVLKQQGVLALRPYL QKQPQPSPAEGRAVTNEPEEEELATLSEE EAMAVTAWEKGLESLPPLRPQQNPVLPV AGE	NO.	10	MetRS ^{N10}	Human/ 1-214	MRLFVSDGVPGCLPVLAAAGRARGRAEV LISTVGPEDCVVPFLTRPKVPVLQLDSGN YLFSTSAICRYFFLLSGWEQDDLTNQWLE WEATELQPALSAALYYLVVQGKKGEDVLG SVRRALTHIDHSLSRQNCPFLAGETESLA DIVLWGALYPLLQDPAYLPEELSALHSWF QTLSTQEPCQRAAETVLKQQGVLALRPYL QKQPQPSPAEGR	NO. 64	
MetRS ^{N2}	DNA/ Human/	ATGAGACTGTTCGTGAGTGATGGCGTCC CGGGTTGCTTGCCGGTGCTGCCCCCC CGGGTGCTTGCCGGTGCTGCCCCCCC CGGGAGACCCCGGGCAGAGCAGA	SEQ. ID. NO. 61	20 25 30	MetRS ^{N10}	Human/	ATGAGACTGTTCGTGAGTGATGGCGTCC CGGGTTGCTTGCCGGTGCTGGCCGCC CGGAGAGCCCGGGGCAGAGCAGA	SEQ. ID. NO. 65	
MetRS ^{N9}	Protein, Human/ 1-197	AGGAGAAGGCCTAGAAAAGTTTGCCCCC GGTGCGGCCCCAGCAGAATCCAGTGTTG CCTGTGGCTGGAGAA MRLFVSDGVPGCLPVLAAAGRARGRAEV LISTVGPEDCVVPFLTRPKVPVLQLDSGN YLFSTSAICRYFFLLSGWEQDDLTNQWLE WEATELOPALSAALYYLVVOGKKGEDVLG	NO.	40	MetRS ^{NII}	Protein/ Human/ 1-221	MRLFVSDGVPGCLPVLAAAGRARGRAEV LISTVGPEDCVVPFLTRPKVPVLQLDSGN YLFSTSAICRYFFLLSGWEQDDLTNQWLE WEATELQPALSAALYYLVVQGKKGEDVLG SVRRALTHIDHSLSRQNCPFLAGETESLA DIVLWGALYPLLQDPAYLPEELSALHSWF QTLSTQEPCQRAAETVLKQQGVLALRPYL QKQPQPSPAEGRAVTNEPE	NO.	
		SVRRALTHIDHSLSRQNCPFLAGETESLA DIVLWGALYPLLQDPAYLPEELSALHSWF QTLSTQEPCQRAAETVLKQQGVLA		45	\mathtt{MetRS}^{N11}	DNA/ Human/	ATGAGACTGTTCGTGAGTGATGGCGTCC CGGGTTGCTTGCCGGTGCTGGCCGCCG CGGGAGAGCCCGGGCAGAGCA GCTCATCAGCACTGTAGGCCCGGAAGA	SEQ. ID. NO. 67	
MetRS ^{N9}	DNA/ Human/	ATGAGACTGTTCGTGAGTGATGGCGTCC CGGGTTGCTTGCCGGTGCTGGCCGCCGC CGGGAGAGCCCGGGCAGAGCAGA	SEQ. ID. NO. 63	50 55 60			TTGTGTGGTCCGGTCCTGACCGGCCT AAGGTCCCTGTCTTGCAGCTGGATAGCG GCAACTACCTCTTCTCCACTAGTGCAAT CTGCCGATATTTTTTTTTT		

37 C-Terminal AARS Polypeptides

Tables 4, 5 & 6

	A	ARS pol	Lypept		.e 4A ; identi:	fied h	oy MS		
Name	Type/ species/ Residues		acid	and	Nucleic	Acid	Sequences	SEQ ID.	
MetRS ^{C1}	Protein/ Human/ 194-900	EELATI PQQNP\ LGNIIC GTDEYC HADIYF QQLLKF RFVEG\ AVELKK KLEKRI WLRDGI KVFYVW WKNPEG\ ALGAEI SRGVG\ PEGQDS NRAGME AHVTLE RHGNQ\ VTGLA\ QLQLPF LFQKLE VVETVI	LSEEE I //LPVAC //LPVAC //LPVAC //LPCAC //LPCA	AMAV. AMAV. BERNV DVFF VKALE FFDIF FFDIF TRDL GYLS GYLS GYLS GYLS GYLS L	TAWEKGLI TLTSALPY ARYSRLRQI GEGLTPQE: GRTTTPQC GLRCEHCI RGDQCDKC GSDWTPNI KWGTPVPI ITANYTDQ DNVPFHSI I PAD IWRI KKNS ELLI YPEWYLTPI RIKGS EADI	ESLPPI YVNNVI WNTLYI I CDKYI QTKITG ARFLAI CGKLII HLFLDI AQFITI LEGFEI QWERW LVFPCS EDGKFS FYLLY NNLGNII DDQRLI LRSILS KRQRAG' VSATI GGHQIG' KTSPKI QGNIVI	LR PH LC C C N LP C S S S S K IR F I I I I I I I I I I I I I I I I I	SEQ ID. No.	
Metrs ^{C1}	DNA/ Human/	AAAAGC AGGGAA AGGAGC AGGGAGC TTGGGG TTGGGGGT TTGCCAG AACAAT TTGTTG TCCTGG AGATCT TTTTTG TCTCAG ACATT TTTTTG TCTCAG ACATT TTTTTG TCTCAG ACATT TTTTTG TCCTCAG ACATT TTTTTG TCCTCAG ACATT TTTTTG TCCTCAG ACATT TTTTTG TCCTCAG ACATT TTTTG TCCTCAG CTCAGC CTCAGC CTCAGC CTCAGC AGTTT TTTTG CTCAGC CTCAGC CTCAGC AGTTT TTTTG TGCCT TTTTG CTCAGC CTCAGC AGTTT TTTG TGCCT TAGAAC TGGCCT TGGCC TGGCC TGGCAC TGGCC TGGC TGGCC TGGC TGGCC TGGC	CAGCCC AGGGCT AGGGCT AGAGAGG FGCGGC FGTGTC FGTGT FGTGTC FGTGT FGT F	CCAGC GTCAGC GTC	CCGGCCTTA CCCAGCCCC CCCAGCCCCCCCCCCCCCCC	EGCTG ECCTG ATCTG IACTG		SEQ ID. NO.	

-continued

CATTGCTACAGAGTACCTGAACTATGAG GATGGGAAATTCTCTAAGAGCCGCGGT GTGGGAGTGTTTGGGGACATGGCCCAG GACACGGGGATCCCTGCTGACATCTGGC GCTTCTATCTGCTGTACATTCGGCCTGA GGGCCAGGACAGTGCTTTCTCCTGGACG ${\tt GACCTGCTGCTGAAGAATAATTCTGAGC}$ TGCTTAACAACCTGGGCAACTTCATCAA ${\tt CAGAGCTGGGATGTTTGTGTCTAAGTTC}$ ${\tt TTTGGGGGCTATGTGCCTGAGATGGTGC}$ ${\tt TCACCCTGATGATCAGCGCCTGCTGGC}$ CCATGTCACCCTGGAGCTCCAGCACTAT ${\tt CACCAGCTACTTGAGAAGGTTCGGATCC}$ GGGATGCCTTGCGCAGTATCCTCACCAT ATCTCGACATGGCAACCAATATATTCAG GTGAATGAGCCCTGGAAGCGGATTAAA GGCAGTGAGGCTGACAGGCAACGGGCA GGAACAGTGACTGGCTTGGCAGTGAAT ATAGCTGCCTTGCTCTGTCATGCTTC AGCCTTACATGCCCACGGTTAGTGCCAC AATCCAGGCCCAGCTGCAGCTCCCACCT CCAGCCTGCAGTATCCTGCTGACAAACT TCCTGTGTACCTTACCAGCAGGACACCA GATTGGCACAGTCAGTCCCTTGTTCCAA AAATTGGAAAATGACCAGATTGAAAGT TTAAGGCAGCGCTTTGGAGGGGGCCAG GCAAAAACGTCCCCGAAGCCAGCAGTT GTAGAGACTGTTACAACAGCCAAGCCA CAGCAGATACAAGCGCTGATGGATGAA GTGACAAAACAAGGAAACATTGTCCGA GAACTGAAAGCACAAAAGGCAGACAAG AACGAGGTTGCTGCGGAGGTGGCGAAA CTCTTGGATCTAAAGAAACAGTTGGCTG TAGCTGAGGGGAAACCCCCTGAAGCCC CTAAAGGCAAGAAGAAAAGTAA

Table 4B $$\operatorname{\mathsf{MetRS}}^{C1}$$ Mass spec peptides detected and inferred linking peptides

Type/ species	Sequence	SEQ. ID. NO.
Protein/ mouse	TVSNELEEEELATLSEEDIVTAVAAWEK	SEQ. ID. NO. 103
Protein/ mouse	GLESLPPLKLQQHPVLPVPGER	SEQ. ID. NO. 104
Protein/ mouse	NVLITSALPY	SEQ. ID. NO. 105
Protein/ mouse	VNNVPHLGNIIGCVLSADVFAR	SEQ. ID. NO. 106
Protein/ mouse	YCR	SEQ. ID. NO. 107
Protein/ mouse	LROWNTLYLCGTDEYGTATETK	SEQ. ID. NO. 108
Protein/ mouse	AMEEGLTPR	SEQ. ID. NO. 109
Protein/ mouse	EICDKYHAIHADIYR	SEQ. ID. NO. 110
Protein/ mouse	WFGISFDTFGR	SEQ. ID. NO. 111

-continued

Protein/	TTTPQQTK	SEQ.
mouse	1111 00111	ID.
mouse		NO. 112
		NO. 112
Protein/	ITQDIFQR	SEQ.
•	11001100	ID.
mouse		
		NO. 113
Protein/	LLTRGFVLRDTVEQLRCERCARFLADR	SEQ.
mouse		ID.
		NO. 114
Protein/	FVEGVCPFCGYEEAR	SEQ.
mouse		ID.
		NO. 115
Protein/	GDQCDRCGKLINAIELKKPQCKICRSCPVVR	SEQ.
mouse		ID.
		NO. 116
Protein/	SSQHLFLDLPK	SEQ.
mouse		ID.
		NO. 117
Protein/	LEKRLEDWLGKTVPGSDWTPNARFIIRSWLRDGLKPR	SEQ.
mouse	CITRDLKWGTPVPLEGFEDKVFYVWFDATIGYVSITA	ID.
	NYTDQWEKWWKNPEQVDLYQFMAK	NO. 118
	~ ~ ~	
Protein/	DNVPFHGLVFPCSVLGAEDNYTLVK	SEQ.
mouse		ID.
		NO. 119
Protein/	HIIATEYLNYEDGK	SEO.
mouse		ID.
		NO. 120
		110. 120
Protein/	FSKSRGIGVFGDMAKDTGIPADIWRFYLLY	SEQ.
mouse		ID.
mouse		NO. 121
		NO. 121
Protein/	IRPEGQDSAFSWTDLLIKNNSELLNNLGNFINR	SEQ.
mouse		ID.
mouse		NO. 122
		1.0. 122
Protein/	AGMFVSKFFGGCVPEMALTPDDRRLVAHVSWELQH	SEQ.
mouse	YHQLLEKVRIRDALRSILTISR	ID.
mouse		NO. 123
		110. 125
Protein/	HGNQYIQVNEPWKR	SEQ.
mouse	1101191191191	ID.
mouse		NO. 124
		NO. 124
Protein/	IKGGEMDRQRAGTVTGMAVNMAALLSVMLQPYMPT	SEQ.
mouse		ID.
lilouse	VSSTIQTQLQLPPAACRILATSFICTLPAGHR	
		NO. 125
Protein/	TOTAGDIDOR	CEO.
Protein/	IGTVSPLFQK	SEQ.
mouse		ID.
		NO. 126
Protein/	I.FNDOT PNI.P	SEQ.
Protein/ mouse	LENDQIENLR	SEQ. ID.
mouse		
		NO. 127
Protein/	QRFGGGQAK	SEQ.
•	QKFGGGQAK	
mouse		ID.
		NO. 128
Protoin/	CCDVDA AUDAUTA ACCOUTOU TOUUTU	CEO.
Protein/	GSPKPAAVEAVTAAGSQHIQTLTDEVTK	SEQ.
mouse		ID.
		NO. 129
5		ano.
Protein/	QGNVVRELKAQKADKNQVAAEVAKLLDLKK	SEQ.
mouse		ID.
		NO. 130

-continued

Protein/ mouse	QLALAEGKPIETPK	SEQ. ID. NO. 131
Concatena	Table 4C MetRS ^{C1} ated sequences based on mass spec peptides	detected
Type/ species	Sequence	SEQ. ID. NO.
Protein/ mouse	TVSNELEEELATLSEEDIVTAVAAWEKGLESLPPL KLQQHPVLPVPGERNVLITSALPYVNNVPHLGNIIG CVUSADVFARYCRIRQWNTTYLCGTDEYGTATET KAMEEGLTPREICDKYHAIHADIYRWFGISFDTFG RTTTPQQTKITQDIFQRLLTRGFVLRDTVEQLRCERC ARFLADRFVEGVCPFCGYEEARGDQCDRCGKLINAI ELKKPQCKLTCRSCPVVRSSQHIFLDLPKLERRLEDWL GKTVPGSDWTPNARFIIRSWLRDGLKPRCITRDLKWG TPVPLEGFEDKVFYWWFDATIGYVSITANYTDQWEK WWKNPEQVDLYQFMAKDNVPFHGLVFPCSVLGAE DNYTLVKHIIATEYLNYEDGKFSKSRGIGVFGDMAK DTGIPADIWRFYLLYIRPEGQDSAFSWTDLLIKNNSE LLNNLGNFINRAGMFVSKFFGGCVPEMALTPDDRRL VAHVSWELQHYHQLLEKVRIRDALRSILTISRHGNQY IQVNEPWKRIKGGEMDRQRAGTVTGMAVNMAALLS VMLQPYMPTVSSTIQTQLQLPPAACRILATSFICTLPA GHRIGTVSPLFQKLENDQIENLRQRFGGGQAKGSPK PAAVEAVTAAGSQHLQTLTDEVTKQGNVVRELKAQ KADKNQVAAEVAKLLDLKKQLALAEGKPIETPK	SEQ. ID. NO. 132

		TABLE 5	30	TABLE 5-continued						
AARS	AARS polypeptides and alternative transcripts identified by Deep Sequencing					AARS polypeptides and alternative transcripts identified by Deep Sequencing				
Name		/Amino acid and sNucleic Acid Sequences	SEQ. ID. NO.	35	Name		/Amino acid and Nucleic Acid Sequences	SEQ. ID. NO.		
MetRS ^{C3}	Human/ 552-900	/ MAKDNVPFHSLVFPCSALGAEDNYTLVS HLIATEYLNYEDGKFSKSRGVGVFGDMA QDTGIPADIWRFYLLYIRPEGQDSAFSWT DLLLKNNSELLNNLGNFINRAGMFVSKFF GGYVPEMVLTPDDQRLLAHVTLELQHYHQ LLEKVRIRDALRSILTISRHGNQYIQVNE PWKRIKGSEADRQRAGTVTGLAVNIAALL SVMLQPYMPTVSATIQAQLQLPPPACSIL LTNFLCTLPAGHQIGTVSPLFQKLENDQI ESLRQRFGGGQAKTSPKPAVVETVTTAKP QQIQALMDEVTKQGNIVRELKAQKADKNE VAAEVAKLLDLKKQLAVAEGKPPEAPKG KKKK	133	40 45			TGCCACAATCCAGGCCCAGCTGCAGCTC CCACCTCCAGCCTGCAGTATCCTGCTGA CAAACTTCCTGTGTACCTTACCAGCAGG ACACCAGATTGGCACAGTCCCTTG TTCCAAAAATTGGAAAATTGGCAAGATT GAAAGTTTAAGGCAGGCTTTGGAGG GGCCAGGCAAAAACGTCCCCGAAGCCA GCAGTTGTAGAGACTGTTACAACAGCC AAGCCACAGCAGATACAAGGCAGTGATG GATGAAGTGACCAAAACAAGGAAACATT GTCCGAGAACTGAAAGCACAAAAGGCA GACAAGAACGAGTTGGCTGGAGGTG GCGAAACTCTTGGATCTAAAGAAACAG TTGGCTGTAGCTGAGGGGAAACCCCCTG			
\mathtt{MetRS}^{C3}	DNA/ human	ATGGCCAAAGACAATGTTCCTTTCCATA GCTTAGTCTTTCCTTGCTCAGCCCTAGG AGCTGAGGATAACTATACCTTGGTCAGC	SEQ. ID. NO.				AAGCCCCTAAAGGCAAGAAGAAAAGT AA			
		AGCTGAGGATAACTACCTTGATCACCACCTCAAACT ATGAGGATGGGAAATTCTCTAAGAGCC GCGGTGTGGGAGTGTTTTGGGGACATGG CCCAGGACACGGGGATCCCTGCTGACA TCTGGCGCTTCTATCTGCTGTACATTCG GCCTGAGGGCCAGGACAGTGCTTTCTCC TGGACGGACCTGCTGCTGAAGAATAATT CTGAGCTGCTTAACAACCTGGGCAACTT CATCAACAGAGCTGGGATGTTTTGTCT AAGTTCTTTGGGGGCTATGTGCCTGAGA TGGTGCTCACCCCTGATGATCAGCCCT GCTGGCCCATGTCACCCTTGGAGCTTCCAG	134	50 55	MetRS ^{C4}	Human/8 aa +	MWEEPRAKYLNYEDGKFSKSRGVGVFGD MAQDTGIPADIWRFYLLYIRPEGQDSAFS WTDLLLKNNSELLNNLGNFINRAGMFVS KFFGGYVPEMVLTPDDQRLLAHVTLELQH YHQLEKVRIRDALRSILTISRHGNQYIQ VNEPWKRIKGSEADRQRAGTVTGLAVNI AALLSVMLQPYMPTVSATIQAQLQLPPPA CSILLTNFLCTLPAGHQIGTVSPLFQKLE NDQIESLRQRFGGGQAKTSPKPAVVETVT TAKPQQIQALMDEVTKQGNIVRELKAQKA DKNEVAAEVAKLLDLKKQLAVAEGKPPE APKGKKKK	NO.		
		GGATCCGGGATGCCTTGCGCAGTATCCT CACCATATCTCGACATGGCAACCAATAT ATTCAGGTGAATGAGCCCTGGAAGCGG ATTAAAGGCAGTGAGGGTGACAGGCAA CGGGCAGGAACAGTGACTGGCTTGGCA GTGAATATAGCTGCCTTGCTCTCTCTCA TGCTTCAGCCTTACATGCCCACGGTTAG		65	MetRS ^{C4}	DNA/ human	ATGGTGGAAGAACCCAGAGCAAAGTAC CTGAACTATGAGGATGGGAAATTCTCTA AGAGCCGCGGTGTGGGAGTGTTTGGGG ACATGGCCCAGGACACGGGATCCCTG CTGACATCTGGCGCTTCTATCTGCTGTA CATTCGGCCTGAAGGCCAGGACAGTGC TTTCTCCTGGACGGCCCTGCTGCAAG	SEQ. ID. NO. 136		

	TABLE 5-continued					TABLE 5-continued				
AARS		ides and alternative transcrip	ots		AARS polypeptides and alternative transcripts identified by Deep Sequencing					
Name	-	/Amino acid and SNucleic Acid Sequences	SEQ. ID. NO.	5	Name		s/Amino acid and esNucleic Acid Sequences	SEQ. ID. NO.		
		AATAATTCTGAGCTGCTTAACAACCTGG GCAACTTCATCAACAGAGCTGGGATGTT TGTGTCTAAGTTCTTTGGGGGCTATGTG CCTGAGATGGTCTCACCCCTGATGATC AGCGCCTGCTGGCCATGTCACCCTGGA GCTCCAGCACTATCACCAGCTTACTCAGCATGATCACCAGCTTACTCAGCATGACCAGATCCAGCATCCCAGATCCAGCATCCCAGATCCCAGATCCCAGATCCCAGATCCCAGATCCCAGATCCCAGATATATTCAGGTGAATGAGCCCTGCAGCAACCAATATATTCAGGTGAATGAGCCTGCTTGCT		10 15 20 25	MetRS ^{C6}	DNA/ human	ATGAGACTGTTCGTGAGTGATGGCGTCC CGGGTTGCTTGCCGGTGCTGGCCGCCGC CGGGAGAGCCCGGGGCAGAGAGAGCAGAGACACAGAGCTGAGAGCACAGAGACACAGAGACATGTCCAGACACATGTCAGACACTGAGACCAGAGACAGAGAGTGCCTGAGAGACATGTCAGAGAGAG	SEQ. ID. NO. 140		
MetRS ^{C5}	Protein/ Human/ 846-900	MDEVTKQGNIVRELKAQKADKNEVAAE VAKLLDLKKQLAVAEGKPPEAPKGKKKK	SEQ. ID. NO. 137	35			GCTTCCTGGCTGACCGCTTCGTGGAGGG CGTGTGTCCCTTCTGTGGCTATGAGGAG GCTCGGGGTGACCAGTGTGACAAGTGT GGCAAGCTCATCAATGCTGTCGAGCTTA AGAAGCCTCAGTGTAAAGTCTGCCGATC ATGCCCTGTGGTGCAGTCGAGCCAGCAC			
MetRs ^{C5}	DNA/ human	ATGGATGAAGTGACAAAACAAGGAAAC ATTGTCCGAGAACTGAAAGCACAAAAG GCAGACAAGAACGAGGTTGCTGCGGAG GTGGCGAAACTCTTGGATCTAAAGAAA CAGTTGGCTGTAGCTGAGGGAAACCC CCTGAAGCCCCTAAAGGAAAA AAGTAA	SEQ. ID. NO. 138	40			CTGTTTCTGGACCTGCCTAAGCTGGAGA AGCGACTGGAGGAGTGGTGACTGGGAGGA TGCCCAGTTTATCACCCGTTCTTGGCTT CGGGATGGCCTCAAGCCACCCAA CCCGAGACCTCAAATGGGAACCCCTG TACCCTTAGAAGGTTTTGAACAAGGT ATCTATGTCTGGTTTGATGCCACTATT GGCTATCTTTGCTTCCATCACAGCCAACTACA			
MetRs ^{C6}	Human/ 1-36 +	MRLFVSDGVPGCLPVLAAAGRARGRAEVL ISTVGPEEELSALHSWFQTLSTQEPCQRA AETVLKQQGVLALRPYLQKQPQPSPAEGR AVTNEPEEEELATLSEEEIAMAVTAWEKG LESLPPLRPQQNPVLPVAGERNVLITSAL PYVNNVPHLGNIIGCVLSADVFARYSRLR QWNTLYLCGTDEYGTATETKALEEGLTPQ	ID. NO. 139	45			CAGACCAGTGGGAGAGATGGTGGAAGA ACCCAGAGCAAGTGGACCTGTATCAGTT CATGGCCAAAGACAATGTTCCTTTCCAT AGCTTAGTCTTTCCTTGCTCAGCCCTAG GAGCTGAGTAACCTATACCTTGGTCAG CCACCTCATTGCTACAGAGTACCTGAAC TATGAGGATGGGAAATTCTCTAAGAGC CGCGGTGTGGGAAGTGTTTGGGGACATG			
		EICDKYHIIHADIYRWFNISFDIFGRTTT PQQTKITQDIFQQLKRGFVLQDTVEQLR CEHCARFLADRFVEGVCPFCGYEEARGDQ CDKCGKLINAVELKKPQCKVCRSCPVVQ SQQHLFLDLPKLEKRLEEWLGRTLPGSDW TPNAQFITRSWLRDGLKPRCITRDLKWGT PVPLEGFEDKVFYVWFDATIGYLSITANY TDQWERWWKNPEQVDLYQFMAKDNVPF HSLVFPCSALGAEDNTTLVSHLIATEYLN YEDGKFSKSRGVGVFGDMAQDTGIPADI WRFYLLYIRPEGQDSAFSWTDLLKKNNSE LLNNLGNFINRAGMFVSKFFGGYVPEMV LTPDDQRLLAHVTLELQHYHQLLEKVRIR DALRSILTISRHGNQYIQVNEPWKRIKGS EADRQRAGTVTGLAVNIAALLSVMLQPYM PTVSATIQAQLQLPPPAGSILLTNFLCTL PAGHQIGTVSPLFQKLENDQIESLRQRFG GGQAKTSPKPAVVETVTTAKPQQIQALMPG		50 55 60			GCCCAGGACACGGGGATCCCTGCTGAC ATCTGGCGCTTCTATCTGCTGTACATTC GGCCTGAGGGCCAGGACAGTGCTTTCTC CTCGACGGACCTGCTGACAATAA TTCTGAGCTGCTTAACAACCTGGGCAAC TTCATCAACAGAGCTGGGTATGTTGTGT CTAAGTTCTTTGGGGGCTATTGTGCTGA GATGTGGTCACCCTGATGATCAGCGC CTGCTGGGCCCATGTCACCTGAGAGCTCC AGCACTATCACCAGCTACTTGAGAAGGT TCGGATCCGGGATGCCTTGCGCAGTATC CTCACCATATCTCGACATGCAACCAAT ATATTCAGGTGAATGAGCCCTGGAAGC AACGGGCAGGAACAAT ATATCAGGTGAATGAGCCTTGACAGGC AACGGCAGGAACAGTACAGGC AACGGCAGGAACCAGTT CAGTGAATTAAGCTGCCTTGCTCTGT CAGTGAATATAGCTGCCTTGCTCTGT CAGGTTCAGCCTTACAGCCCACGGTT ATGCCACCACAATCCAGGCCAGG			
		EVTKQGNIVRELKAQKADKNEVAAEVAKL LDLKKQLAVAEGKPPEAPKGKKKK		65			TGACAAACTTCCTGTGTACCTTACCAGC AGGACACCAGATTGGCACAGTCAGTCC			

TARLE	5-continued	

AARS		ides and alternative transcri	pts	•	AARS		tides and alternative transcrip	ots
Name	Type/ species,	ified by Deep Sequencing Amino acid and Nucleic Acid Sequences	SEQ. ID. NO.	. 5	Name	Type/ species,	tified by Deep Sequencing /Amino acid and sNucleic Acid Sequences	SEQ ID. NO.
		CTTGTTCCAAAAATTGGAAAATGACCAG ATTGAAAGTTTAAGGCAGCGCTTTGGAG GGGGCCAGGCAAAAACGTCCCCGAAGC CAGCAGTTGTAAGAGACTGTTACAACAG CCAAGCCACAGCAGATACAAGCGCTGA TGGATGAAGTGACAAAACAAGGAAACA TTGTCCGAGAACTGAAAGCACAAAAGG CAGACAAGAACCAGGTTCCTGCGGAGG TGGCGAAACTCTTGGATCTAAAGAAAC AGTTGGCTGTAGCTGAAGGAAACAC CTGAAGCCCCTAAAGGCAAGAAAAAAAAAA		10			CCTTTCCATAGCTTAGTCTTTCCTTGCT CAGCCCTAGGAGCTGAGGATAACTATAC CTTGGTCAGCCACCTCATTGCTACAGAG TACCTGAACTATGAGAGTAGGAAATTCT CTAAGAGCCGCGGTGTGGGAGTGTTTG GGACATGGCCCAGGACACGGGATCC CTGCTGACATCTGGCGCTTCTATCTGCT GTACATTCGGCCTGAGGACCAGGACAG TGCTTTCTCCTGGACGGACTGCTG AAGAATAATTCTGAGCTGCTTAACAACC TGGGCAACTTCATCAACAGAGCTGGGA TGTTTTTGTCTCTAAGTTCTTTTGGGGGCTA	
MetRS ^{C7}	Human/	MAVTAWEKGLESLPPLRPQQNPVLPVAGE RNVLITSALPYVNNVPHLGNIIGCVLSAL VFARYSRLRQWNTLYLCGTDEYGTATETK ALEGGLTPQEICDKYHIIHADIYRWFNIS PDIFGRTTTPQQTKITQDIFQQLLKRGFV LQDTVEQLRCEHCARFLADRFVEGVCPFC GYEEARGDQCDKCGKLINAVELKKPQCK VCRSCPVVQSSQHLFLDLPKLEKRLEEWL GRTLPGSDWTPNAQFITRSWLRDGLKPRC ITRDLKWGTPVPLEGFEDKVFYVWFDATI GYLSITANYTDQWERWWKNPEQVDLYQ FMAKDNVPFHSLVFPCSALGAEDNYTLVS HLIATEYLNYEDGKFSKSRGVGYFGDMA QDTGIPADIWRFYLLYIRPEGQDSAFSWT DLLLKUNSELLNNLGNFINRAGMFVSKFF GGYVPEMVLTPDDQRLLAHVTLELQHYHC LLEKVRIRDALRSILTISRHGNQYIQVME PWKRIKGSEADRQRAGTVTGLAVNIAALL SYMLQPYMPTVSATIQAQLQLPPPACSIL LTNFLCTLPAGHQIGTVSPLFQKLENDQI ESLRQRFGGGQAKTSPKPAVVETVTTAKE QQIQALMDEVTKQGNIVRELKAQKADKNE VAAEVAKLLDLKKQLAVAEGKPPEAPKG KKKK	D ID. NO. 141	20 25 30			TGTGCTGAGATGGTGCTCACCCCTGAT GATCAGCGCCTGCTGGCCCATGTCACCC TGAGAGCTCCAGCACTATCACCACCTTCGACATCCTCAGCACTACT TGAGAAGGTTCGGATCCCGGATGCCTTG CGCAGTATCCTCACCATTACTCGACATG GCAACCAATATATTCAGGTGAATGAGC CCTGGAAGCGGATTAAAGGCAGTGAG CTGACAGGCAACGGGCAGGAACAGTGA CTGGCTTGGCAGTGAATATAGCTGCCTT GCTCTCTTGTCATGCTTCAGCCTTACATG CCCACGGTTAGTGCACATCCAGGCCC AGCTGCAGCTCCAGCCTGCAG TATCCTGCTGACACAACTTCCTGTGTACC TTACCAGCAGGACACCAGATTGGCACA ATGACCAGATTGTCCAAAAATTGGAAA ATGACCAGATTGTTCCAAAAATTGGAAA ATGACCAGATTGTACCAGCCTGCAG GCTTTGGAGGGGCCCAGCCAAAAACGT CCCCGAAGCCAGCAGTTGTAGAACT TTACAACAGCAGAGAACAACAGAGAATAC AAGGAAACATTGCCAGAAACTGAAAAC CACAAAAGGCAGACAAAACTGAAAAC CACCAAAAAGGCAGAACAAACCT CTGCGGAGGTGGCGAAACTTTGGATCT AAAGAACAGTTGGCTGAGGG GAAACCCCCTGAAGCCAAGCAGATTT	
Metrs ^{c7}	DNA/ human	ATGGCTGTTACTGCTTGGGAGAAGGGCC TAGAAAGTTTGCCCCGCTGCGGCCCCA GCAGAATCCAGTGTTGCCTGTGGCTGGA GAAAGAATGTGCTCATCACCAGTGCC CTCCCTTACGTCAACAATGTCCCCCACC TTGGGAACATCATTGGTTGTTGTCTCAG TGCCGATGTCTTTGCCAGGTACTCTGG CTCCGCCAGTGGAACACCTCTATCTGT GTGGACCAGATGATGATGTACAGCAA CAGAGACCAAGGTCTTGGAGAGAGGAC TAACCCCCCAGGAGATCTGCAGCAAGT ACCACATCATCCATGCTGACATCTACTG GTGGTTTAACATTTCGTTTGATATTTTT GGTCGCACCACCACTCCACAGCAGACCA AAATCACCCAGGACATTTTCCAGCAGTT GCTGAAACGAGCATTTTCTGTGACACT GTGGAGCAACTCCACGAGTT GCTGAAACGAGCTTTCTTGTGTCAAGAT ACTGTGGAGCAACTCCACTGACCACTTCG TGGAGAGCTTCCTGGCTGACCCTTCG TGAGGAGCTCTCGTTGACATCTTC CGAGGTTTAAGAACCAAGCTAATGCTGTCA CAAGTTTGCAGCTTCTTGTGCTA CAAGTGTGCAAGCTCATCATCATCTGTC CAGCTTAAGAACCCATGTTAAAGTCT GCCGATCATGCCTTGTGTGACACCCTTCC GCGATCATGCCCTTGTGAGCAC CTGCATCATGCCCTTGTGAGCAC CTGCATCATGCCCTTGTGAGCAC CTGCACACCCTGTTTCTTGGACCTCAGC CCAGCACCTGTTTCTTGGACCTCCAGC CCAGCACCTGTTTCTTGGACCTCCCTCAGC CCAGCACCTGTTTCTTGGACCTCCTCAGC CCAGCACCTGTTTCTTGGACCTGCCTAAG CCAGCACCTGTTTCTTGGACCTGCCTAAG CTGGAGAAGCGACTGGAGGAGTGGTTG	SEQ. ID. NO. 142	40 45 50	MetRS ^{C8}	Human/4 aa + 258-900	GAAGAAAAGTAA / MSLRLPVAGERNVLITSALPYVNNVPHLG NIIGCVLSADVPARYSRLRQWNTLYLCGT DEYGTATETKALEEGLTPQEICDKYHIIH ADIYRWFNISFDIFGRTTTPQCTKITQDI FQQLLKRGFVLQDTVEQLRCEHCARFLAD RFVEGVCPFCGYEEARGDQCDKCGKLINA VELKKPQCKVCRSCPVVQSSQHLFLDLPK LERRLEEWLGRTLPGSDWTPNAQFITRSW LRDGLKPRCITRDLKWGTPVPLEGFEDKV FYVWFDATIGYLSITANYTDQWERWWKN PEQVDLYQFMAKDNVPFHSLVFPCSALG AEDNYTLVSHLIATEYLNYEDGKFSKSRG VGVFGDMAQDTGIPADIWRFYLLYIRPEG QDSAFSWTDLLLKNNSELLNNLGNFINRA GMFVSKFFGGYVPEMVLTPDDQRLLAHV TLELQHYHQLLEKVRIRDALRSILTISRH GMQYIQVNEPWKRIKGSEADRQRAGTVTG LAVNIAALLSVMLQPYMPTVSATIQAQLQ LPPPACSILLTNFLCTLPAGHQIGTVSPL FQKLENDQIESLRQRFGGGQAKTSPKPAV VETVTTARPQQIQALMDEVTKQGNIVREL KAQKADKNEVAAEVAKLLDLKKQLAVAE GKPPEAPKGKKKK	ID. NO. 143
		GGGAGGACATTGCCTGGCAGTGACTGG ACACCAATGCCCAGTTTATCACCCGTT CTTGGCTTCGGGATGGCCTCAAGCCACG CTGCATAACCCGAGACCTCAAATGGGG AACCCCTGTACCCTTAGAAGGTTTTGAA GACAAGGTATTCTATGTCTGGTTTGATG CCACTATTGGCTATCTGTCCATCACAGC CAACTACACAGACCAGTGGGAGAGATG GTGGAAGAACCCAGAGCAAGTGGACCT GTATCAGTTCATGCCAAAGACAATGTT		60	MetRS ^{C8}	DNA/ human	ATGAGCCTGAGGTTGCCTGTGGCTGGAG AAAGGAATGTGCTCATCACCAGTGCCCT CCCTTACGTCAACAATGTCCCCCACCTT GGGAACATCATTGGTTGTTGGTCTCAGTG CCGATGTCTTTGCCAGGTACTCTCGCCT CCGCCAGTGGAACACCCTCTATCTGTGT GGGAACAATGAGTATGGTACAGCAACA GAGACCAAGGCTCTGGAGGAGGAGCTA ACCCCCCAGGAGATCTGCGACAAGTAC CACATCATCCATGCTGACAATCACCCCT	SEQ ID. NO. 144

	TABLE 5-continued		TABLE 5-continued				
AARS	polypeptides and alternative transcri	pts	-	AAR		tides and alternative transcri	.pts
Name	Type/ species/Amino acid and ResiduesNucleic Acid Sequences	SEQ. ID. NO.	5	Name		r/Amino acid and esNucleic Acid Sequences	SEQ. ID. NO.
	GGTTTAACATTTCGTTTGATATTTTTGG TCGCACCACCACCACACACACACACACACACACACACCACC		10 15 20			LRCEHCARFLADRFVEGVCPFCGYEEARG DQCDKCGKLINAVELKKPQCKVCRSCPVV QSSQHLFLDLPKLEKRLEEWLGRTLPGSI WTPNAQFITRSWLRDGLKPRCITRDLKW GTPVPLEGFEDKVPFVWFDATIGYLSIT: NYTDQWERWWKNPEQVDLYQFMAKDNV PFHSLVFPCSALGAEDNYTLVSHLIATE* LNYEDGKFSKSRGVGVFGDMAQDTGIPA DIWRFYLLYIRPEGQDSAFSWTDLLLKNI SELLINNLGNFINRAGMFVSKFFGGYVPEI VLTPDDQRLLAHVTLELQHYHQLLEKVR: RDALRSILTISRHGNQYIQVNEPWKRIK, SEADRQRAGTVTGLAVNIAALLSVMLQP* MPTVSATIQAQLQLPPPACSILLTNFLC* LPAGHQIGTVSPLFQKLENDQIESLRQRI GGGQAKTSPKPAVVETVTTAKPQQIQALI DEVTKQGNIVRELKAQKADKNEVAAEVAL	V A Y V M I I I I I I I I I I I I I I I I I I
	AAGGTATTCTATGTCTGGTTTGATGCCA CTATTGGCTATCTGTCCATCACAGCCAA CTACACAGACCAGTGGGAGAGATGGTG GAAGAACCCAGAGCAAGTGGACCTGTAT CAGTTCATGGCCAAAGACAATGTTCCTT TCCATAGCTTAGTCTTTCCTTGCTCAGC CCTAGGAGCTGAGGATAACTATACCTTG GTCAGCCACCTCATTGCTACAGAGTACC TGAACTATGAGGATGGGAAATTCTCTAA GAGCCGCGGTGTGGGAGTGTTTGGGGA		25	MetRS ^{C9}	DNA/ human	ATGAGACTGTTCGTGAGTGATGGCGTCC CGGGTTGCTTGCCGGTGCTGGCCGCC CGGGAGAGCCCGGGCAGACCAGAGGT GCTCATCAGCACTGTAGGCCCGGAAGA TTGTGTGGTCCCGTTCCTGACCCGGCCT AAGGTCCCTGTCTTGCAGCTGGATAGCG GCAACTACCTCTTCTCCACTAGTGCATCTGCAGCTGGATATCTTGCAGCTGGATACCGGTGCAATCTGCAGTAGGAACAGATGACCAGT	SEQ. ID. NO. 146
	CATGGCCCAGGACACGGGGATCCCTGC TGACATCTGGCGCTTCTATCTGCTGTAC ATTCGGCCTGAGGGCCAGGACAGTGCTT TCTCCTGGACGGACCTGCTGCTGCTGAAGAA TAATTCTGAGCTGCTTAACAACCTGGGC AACTTCATCAACAGAGCTGGGGTATGTTTG TGTCTAAGTTCTTTGGGGGCTATGTGCC TGAGATGGTGCTCACCCCTGATGATCAG CGCCTGCTGGCCCATGTCACCCTGGAGC		35			GGCTGGAATGGGAAGCGACAGAGCTGC AGCCAGCTTTGTCTGCTGCCCTGTACTA TTTAGTGGTCCAAGGCAAGAAGGGGGA AGATGTTCTTGGTTCAGTGCGGAGAGCC CTGACTCACATTGACCACAGCTTGAGTC GTCAGAACTGTCCTTTCCTGGCTGGGGA GACAGAATCTCTAGCCGACATTGTTTG TGGGGAGCCCTATACCCATTACTGCAAG ATCCCGCCTACCTCCCTGAGGAGCTGAG	
	TCCAGCACTATCACCAGCTACTTGAGAA GGTTCGGATCCGGGATGCTTGCGCAGT ATCCTCACCATATCTCGACATGCAACC AATATATTCAGGTGAATGAGCCCTGGA AGCGGATTAAAGGCAGTGAGGCTGACA GGCAACGGGCAGGAACAGTGACTGGCT TGGCAGTGAATATAGCTGCCTTGCTCT TGTCATGCTTCAGCCTTACATGCCCACG GTTAGTGCCACAATCCAGGCCCAGCTGC		40			TGCCTGCACAGCTGGTTCCAGACACTG AGTACCCAGGAACCATGTCAGCGAGCT GCAGAGACTTTACTGAAACAGCAAGGT GTCCTGGCTCTCCGGCCTTACCTCCAAA AGCAGCCCCAGCCCAG	
	AGCTCCACCTCCAGCCTGCAGTATCCT GCTGACAAACTTCCTGTGTACCTTACCA GCAGGACACCAGATTGGCACAGTCAGT CCCTTGTTCCAAAAATTGGAAAATGACC AGATTGAAAACTTTAAGGCAGCGCTTTGG AGGGGCCAGGCAAAAACGTCCCCGAA GCCAGCAGTTGTAGAGACTGTTACAAC AGCCAAGCCA		50			GCTGCGGCCCCAGCAGAATCCAGTGTTG CCTGTGGCTGGAGAAAGGAATGTGCTC ATCACCAGTGCCCTCCCTTACGTCAACA ATGTCCCCCACCTTGGGAACATCATTGG TTGTGTGCTCAGTGCCGATGTCTTTGCC AGAATCACCCAGGACATTTTCCAGCAGT TGCTGAAACGAGGTTTTGTGCTGCAAGA TACTGTGGAGCAACTGCGATGTGAGCA	
	GATGGATGAAGTGACAAAACAAGGAAA CATTGTCCGAGAACTGAAAGCACAAAA GGCAGACAAGAACTGGTTGCTGCGA GGTGGCGAAACTCTTGGATCTAAAGAA ACAGTTGGCTGTAGGTGGAAACCC CCCTGAAGCCCCTAAAGGCAAGAAGAA AAAGTAA		55			CTGTGCTCGCTTCCTGGCTGACCGCTTC GTGGAGGGCGTGTTCCCTTCTGTGGCT ATGAGGAGGCTCGGGGTGACCAGTGTG ACAAGTGTGGCAAGCTCATCAATGCTGT CGAGCTTAAGAAGCCTCAGTGTAAAGT CTGCCGATCATGCCTGTGGTGCAGTCG AGCCAGCACCTGTTTTCTGGACCTGCCTA	
MetRS ^{C9}	Protein/MRLFVSDGVPGCLPVLAAAGRARGRAEV Human/ LISTVGPEDCVVPFLTRPKVPVLQLDSGN 1-296 + YLFSTSAICRYFFLLSGWEQDDLTNQWLE 365-900 WEATELQPALSAALYYLVVQGKKGEDVLG SVRRALTHIDHSLSRQNCPFLAGETESLA DIVLWGALYPLLQDPAYLPEELSALHSWF QTLSTQEPCQRAAETVLKQQGVLALRPYL QKQPQPSPAEGRAVTNEPEEEELATLSEE EIAMAVTAWEKGLESLPPLRPQQNPVLPV	I ID. NO. 145	60			AGCTGGAGAAGCGACTGGAGGAGTGGT TGGGGAGGACACTGCCTGGCAGTGACT GGACACCCAATGCCCAGTTTATCACCCG TTCTTGGCTTCGGATGGCCTCAAACCA CGCTGCATAACCCGAGACCTCAAATGG GGAACCCCTGTACCCTTAGAAGGTTTTG AAGACAAGGTATTCTATGTCTGGTTTGA TGCCACTATTGGCTATCTGTCCATCACA GCCAACTACACAGACCAGTGGAGAGA TGGTGGAAGAAACCCAGAGCAAGTGGAC	
	AGERNVLITSALPYVNNVPHLGNIIGCVL SADVFARITQDIFQQLLKRGFVLQDTVEQ		65			CTGTATCAGTTCATGGCCAAAGACAATG TTCCTTTCCATAGCTTAGTCTTTCCTTG	

52

TABLE 5-continued TABLE 5-continue

	T	'ABLE 5-continued				r	TABLE 5-continued	
AARS		ides and alternative transcrip	ots		AARS		tides and alternative transcri tified by Deep Sequencing	pts
Name		Amino acid and Nucleic Acid Sequences	SEQ. ID. NO.	5	Name		/Amino acid and sNucleic Acid Sequences	SEQ. ID. NO.
		CTCAGCCCTAGGAGCTGAGGATAACTAT ACCTTGGTCAGCCACCTCATTGCTACAG AGTACCTGAACTATGAGGATGGGAAAT TCTCTAAGAGCCGCGGTGTGGGAGTGTT TGGGGACATGGCCCAGGACCCGGGAT CCCTGCTGACATCTGGCGCTTCTATCTG CTGTACATTCGGCCTTGAGGCCAGGAC		10	MetRS ^{C10}	DNA/ human	ATGAGACTGTTCGTGAGTGATGGCGTCC CGGGTTGCTTGCCGGTGCTGGCCGCCGC CGGGAGAGCCCGGGGCAGAGAGT GCTCATCAGCACTGTAGGCCCGGAAGA TTGTGTGGTCCCGTTCCTGACCCGGCCT AAGGTCCCTGTCTTGCAGCTGGATAGCG GCAACTACCTCTTTCCACTAGTGCAAT	SEQ. ID. NO. 148
		AGTGCTTTCTCCTGGAGGACCTGCTGC TGAAGAATAATTCTGAGCTGCTTAACAA CCTGGGCAACTTCATCAACAGAGCTGG GATGTTTGTGTCTAAGTTCTTTGGGGGC		15			CTGCCGATATTTTTTTTTTTTATCTGGC TGGGAGCAAGATGACCTCACTAACCAGT GGCTGGAATGGGAAGCGACAGAGCTGC AGCCAGCTTTGTCTGCTGCCCTGTACTA	
		TATGTGCCTGAGATGGTGCTCACCCCTG ATGATCAGCGCCTGCTGGCCCATGTCAC CCTGGAGCTCCAGCATATCACCAGCTA CTTGAGAAGGTTCGGATCCGGGATGCCT		20			TTTAGTGGTCCAAGGCAAGAAGGGGGA AGATGTTCTTGGTTCAGTGCGGAGAGCC CTGACTCACATTGACCACAGCTTGAGTC GTCAGAACTGTCCTTTCCTGGCTGGGGA GACAGAATCTCTAGCCGACATTGTTTTG	
		TGCGCAGTATCCTCACCATATCTCGACA TGGCAACCAATATATTCAGGTGAATGA GCCCTGGAAGCGGATTAAAGGCAGTGA GGCTGACAGGCAACGGCAGGAACAGTG					TGGGGAGCCTATACCCATTACTGCAAG ATCCCGCCTACCTCCTGAGGAGCTGAG TGCCCTGCACAGCTGGTTCCAGACACTG AGTACCCAGGAACCATGTCAGCGAGCT	
		ACTGGCTTGGCAGTGAATATAGCTGCCT TGCTCTCTGTCATGCTTCAGCCTTACAT GCCCACGGTTAGTGCCACAATCCAGGCC CAGCTGCAGCTCCCACCTCCAGCCTGCA		25			GCAGAGACTGTACTGAAACAGCAAGGT GTCCTGGCTCTCCGGCCTTACCTCCAAA AGCAGCCCCAGCCCAG	
		GTATCCTGCTGACAAACTTCCTGTGTAC CTTACCAGCAGGACACCAGATTGGCAC AGTCAGTCCCTTGTTCCAAAAATTGGAA AATGACCAGATTGAAAGTTTAAGGCAG		30			AGGAGGAGCTGGCTACCCTATCTGAGG AGGAGATTGCTATGCTTG GGAGAAGGGCCTAGAAAGTTTGCCCC GCTGCGGCCCCAGCAGAATCCAGTGTTG CCTGTGGCTGGAGAAAAGGAATGTGCTC	
		CGCTTTGGAGGGGGCAAGAAAACG TCCCCGAAGCCAGCAGTTGTAGAGACT GTTACAACAGCCAAGCCA					ATCACCAGTGCCCTCCCTTACGTCAACA ATGTCCCCCACCTTGGGAACATCATTGG TTGTGTGCTCAGTGCCGATGTCTTTGCC AGGTACTCTCGCCTCCGCCAGTGGAACA	
		CAAGGAAACATTGTCCGAGAACTGAAA GCACAAAAGGCAGACAAGAACGAGGTT GCTGCGGAGGTGGCGAAACTCTTGGAT CTAAAGAAACAGTTGGCTGTAGCTGAG GGGAAACCCCCTGAAGCCCCTAAAGGC		35			CCCTCTATCTGTGTGGGACAGATGAGTA TGGTACAGCAACAGAGCCAAGGCTCT GGAGGAGGGACTAACCCCCCAGGAGAT CTGCGACAAGTACCACATCATCCATGCT GACATCTACCGCTGGTTTAACATTTCGT	
\mathtt{MetRS}^{C10}		AAGAAGAAAAGTAA MRLFVSDGVPGCLPVLAAAGRARGRAEV		40			TTGATATTTTTGGTCGCACCACCACTCC ACAGCAGACCAAAATCACCCAGGACAT TTTCCAGCAGTTGCTGAAACGAGGTTTT GTGCTGCAAGATACTGTGGAGCAACTG	
		LISTVGPEDCVVPFLTRPKVPVLQLDSGN YLFSTSAICRYFFLLSGWEQDDLTNQWLE WEATELQPALSAALYYLVVQGKKGEDVLG SVRRALTHIDHSLSRQNCPFLAGETESLA	NO.				CGATGTGAGCACTGTGCTCGCTTCCTGG CTGACCGCTTCGTGGAGGGCGTGTGTCC CTTCTGTGGCTATGAGGAGGCTCGGGGT GACCAGTGTGACAAGTGTGGCAAGCTC	
		DIVLWGALYPLLQDPAYLPEELSALHSWF QTLSTQEPCQRAETVLKQQGVLALRPYL QKQPQPSPAEGRAVTNEPEEEELATLSEE EIAMAVTAWEKGLESLPPLRPQQNPVLPV AGERNVLITSALPYVNNVPHLGNIIGGVL		45			ATCAATGCTGTCGAGCTTAAGCTGGAGA AGCGACTGGAGGAGTGGTTGGGGAGA CATTGCCTGGCAGTGACTGGACACCCAA TGCCCAGTTTATCACCCGTTCTTGGCTT CGGGATGGCCTCAAGCCACGCTGCATAA	
		SADVFARYSRLRQWNTLYLCGTDEYGTAT ETKALEEGLTPQEICDKYHIIHADIYRWF NISFDIFGRTTTPQQTKITQDIFQQLLKR GFVLQDTVEQLRCEHCARFLADRFVEGVC		50			CCCGAGACCTCAAATGGGGAACCCCTG TACCCTTAGAAGGTTTTGAAGACAAGGT ATTCTATGTCTGGTTTGATGCCACTATT GGCTATCTGTCCATCACAGCCAACTACA	
		PFCGYEEARGDQCDKCGKLINAVELKLEK RLEEWLGRTLPGSDWTPNAQFITRSWLRD GLKPRCITRDLKWGTPVPLEGFEDKVFYV WFDATIGYLSITANYTDQWERWWKNPEQ		55			CAGACCAGTGGGAGAGATGGTGGAAGA ACCCAGAGCAAGTGGACCTGTATCAGTT CATGGCCAAAGACAATGTTCCTTTCCAT AGCTTAGTCTTTCCTTGCTCAGCCCTAG GAGCTGAGGATAACTATACCTTGGTCAG	
		VDLYQFMAKDNVPFHSLVFPCSALGAED NYTLVSHLIATEYLNYEDGKFSKSRGVGV FGDMAQDTGIPADIWRFYLLYIRPEGQDS AFSWTDLLLKNNSELLNNLGNFINRAGMF VSKFFGGYVPEMVLTPDDQRLLAHVTLE					CCACCTCATTGCTACAGAGTACCTGAAC TATGAGGATGGGAAATTCTCTAAGAGC CGCGGTGTGGGAGTGTTTGGGGACATG GCCCAGGACACGGGGATCCCTGCTGAC	
		LQHYHQLLEKVRIRDALRSILTISRHGNQ YIQVNEPWKRIKGSEADRQRAGTVTGLAV NIAALLSVMLQPYMPTVSATIQAQLQLPP PACSILLTNFLCTLPAGHQIGTVSPLFQK		60			ATCTGGGGCTTCTATCTGCTGTACATTC GGCCTGAGGGCCAGGACAGTGCTTTCTC CTGGACGGACCTGCTGCTGAAGAATAA TTCTGAGCTGCTTAACAACCTGGGCAAC TTCATCAACAGAGCTGGGATGTTTGTGT	
		LENDQIESLRQRFGGGQAKTSPKPAVVET VTTAKPQQIQALMDEVTKQGNIVRELKAQ KADKNEVAAEVAKLLDLKKQLAVAEGK PPEAPKGKKKK		65			CTAAGTTCTTTGGGGGCTATGTGCCTGA GATGGTGCTCACCCCTGATGATCAGCGC CTGCTGGCCCATGTCACCCTGGAGCTCC AGCACTATCACCAGCTACTTGAGAAGGT	

TABLE 5-continued

54 TABLE 5B-continued

	11	TABLE 5-continued				T:	ABLE 5B-continued	
AA		tides and alternative transcri	pts		A	ARS polyp	eptides unique splice junctions	3
 Name	Type/ species	tified by Deep Sequencing / Amino acid and s Nucleic Acid Sequences	SEQ. ID. NO.	5	Name	Type/ species	Amino acid and Nucleic Acid Sequences in the vicinity of the unique splice junction	SEQ. ID. NO.
	Residue	TCGGATCCGGGATGCCTTGCGCAGTATC CTCACCATATCTCGACATGGCAACCAAT ATATTCAGGTGAATGAGCCCTGGAAGC	110.	10		Protein/ Human/	LISTVGPEEELSALHS	SEQ. ID. NO. 155
		GGATTAAAGGCAGTGAGGCTGACAGGC AACGGGCAGGAACAGTGACTGGCTTGG CAGTGAATATAGCTGCCTTGCTCTCTGT CATGCTTCAGCCTTACATGCCCACGGTT			M1- AS13	DNA/ Human/	TCTTCTCCACTAGTGCAATCTGCCG AGG AGCTGAGTGCCCTGCACAGCTG	SEQ. ID. NO. 156
		AGTGCCACAATCCAGGCCCAGCTGCAG CTCCCACCTCCAGCCTGCAGTATCCTGC TGACAAACTTCCTGTGTACCTTACCAGC		15		Protein/ Human/	N/A	
		AGGACACCAGATTGGCACAGTCAGTCC CTTGTTCCAAAAATTGGAAAATGACCAG ATTGAAAGTTTAAGGCAGCGCTTTGGAG		20	M1- AS14	DNA/ Human/	AAGGGCTGTCACCAATGAGCCTGAG GT TGCCTGTGGCTGGAGAAAGGAAT	SEQ. ID. NO. 157
		GGGGCCAGGCAAAAACGTCCCCGAAGC CAGCAGTTGTAGAGACTGTTACAACAG CCAAGCCACAGCAGATACAAGCGCTGA TGGATGAAGTGACAAAACAAGGAAACA				Protein/ Human/	GLSPMSLRLPVAGERN	SEQ. ID. NO. 158
		TTGTCCGAGAACTGAAAGCACAAAAGG CAGACAAGAACGAGGTTGCTGCGGAAG TGGCGAAACTCTTGGATCTAAAGAAAC AGTTGGCTGTAGCTGAGGGAAACCCCC CTGAAGCCCCTAAAGGCAAGAAAAA		25	M1- AS16	DNA/ Human/	TGCTCAGTGCCGATGTCTTTGCCAG AAT CACCCAGGACATTTTCCAGCAG	SEQ. ID. NO. 159
		AGTAA		3 0		Protein/ Human/	LSADVFARITQDIFQQ	SEQ. ID. NO. 160
	AARS polyp	TABLE 5B	s	-	M1- AS17	DNA/ Human/	GCTCATCAATGCTGTCGAGCTTAAG CTG GAGAAGCGACTGGAGGAGTGGT	SEQ. ID. NO.
Name	Type/ species	Amino acid and Nucleic Acid Sequences in the vicinity of the unique splice junction	SEQ. ID. NO.	35		Protein/ Human/	LINAVELKLEKRLEEW	161 SEQ. ID. NO.
M1- AS01	DNA/ Human/	TCTTCTCCACTAGTGCAATCTGCCG GTA TTCTATGTCTGGTTTGATGCCA	SEQ. ID. NO. 149	4 0			TABLE 6	102
	Protein/ Human/	N/A		45			TABLE 0 Typeptides and nucleic acids acids tified by Bioinformatics	
M1- AS06	DNA/ Human/	GCACCACTCCACAGCAGACCAA AA GCCTCAGTGTAAAGTCTGCCGAT	SEQ. ID. NO. 150	45	Name		/Amino acid and sNucleic Acid Sequences	SEQ. ID. NO.
M1- AS08	Protein/ Human/ DNA/ Human/	N/A GAGATGTGGAAGAACCCAGAGCAA A GTACCTGAACTATGAGGATGGGAA	SEQ. ID. NO. 151	50	MetRS ^C	Human/	/ LPPPACSILLTNFLCTLPAGHQIGTVSP LFQKLENDQIESLRQRFGGGQAKT5PKP AVVETVTTAKPQQIQALMDEVTKQGNIV RELKAQKADKNEVAAEVAKLLDLKKQLA VAEGKPPEAPKGKKKK	SEQ. ID. NO. 163
	Protein/ Human/	MVEEPRAKYLNYEDG	SEQ. ID. NO. 152	55	MetRS ^C	² DNA/ Human	CTCCCACCTCCAGCCTGCAGTATCCTGC TGACAAACTTCCTGTGTACCCTTACCAGC AGGACACCAGATTGGCACAGTCAGTCC CTTGTTCCAAAAATTGGAAAATGACCA GATTGAAAAGTTTAAGGCAGCGCTTTGG	SEQ. ID. NO. 164
M1- AS09	DNA/ Human/	GGATTAAAGGCAGTGAGGCTGACAG GT CAGTCCCTTGTTCCAAAAATTGG	SEQ. ID. NO. 153	60			AGGGGGCCAGGCAAAAACGTCCCCGAA GCCAGCAGTTGTAGAGACTGTTACAAC AGCCAAGCCA	
M1-	Protein/ Human/ DNA/	N/A CTCATCAGCACTGTAGGCCCGGAAG AG	SEQ.				ACATTGTCCGAGAACTGAAAGCACAAA AGGCAGACAAGAACGAGGTTGCTGCGG AGGTGGCGAACTCTTGGATCTAAAGA AACAGTTGGCTGTAGCTGAGGGAAAC	
AS12	Human/	GAGCTGAGTGCCCTGCACAGCTG	ID. NO. 154	65			CCCCTGAAGCCCCTAAAGGCAAGAAGA AAAAGTAA	

Table 7A AARS polypeptides identified by MS
Type/ species/ Amino acid and SEQ. Name Residues Nucleic Acid Sequences ID. NO.
Table 7B Mass spec peptides detected and inferred linking peptides
Type/ SEQ. species Sequence ID. NO.
Table 7C Concatenated sequences based on mass spec peptides detected
Type/ SEQ. species Sequence ID. NO.
TABLE 8
AARS polypeptides and alternative transcripts identified by Deep Sequencing
Type/ species/ Amino acid and SEQ. Name Residues Nucleic Acid Sequences ID. No.
TABLE 8B
AARS polypeptides unique splice junctions
Amino acid and Nucleic Acid Sequences in the vicinity of the SEQ. Name species unique splice junction ID. NO.
TABLE 9
AARS polypeptides and nucleic acids identified by Bioinformatics
Type/ species/ Amino acid and SEQ. Name Residues Nucleic Acid Sequences ID. No.

"Protein fragments," or the amino acid sequence of protein fragments, such as proteolytic fragments or splice variant fragments, can be characterized, identified, or derived according to a variety of techniques. For instance, splice variants can be identified by techniques such as deep sequenc- 50 ing (see, e.g., Xing et al., RNA. 14:1470-1479, 2008; and Zhang et al., Genome Research. 17:503-509, 2007). As a further example, protein fragments such as proteolytic fragments can be identified in vitro, such as by incubating fulllength or other AARS polypeptides with selected proteases, 55 or they can be identified endogenously (e.g., in vivo). In certain embodiments, protein fragments such as endogenous proteolytic fragments can be generated or identified, for instance, by recombinantly expressing full-length or other AARS polypeptides in a selected microorganism or eukary- 60 otic cell that has been either modified to contain one or more selected proteases, or that naturally contains one or more proteases that are capable of acting on a selected AARS polypeptide, and isolating and characterizing the endogenously produced protein fragments therefrom.

In certain embodiments, protein fragments such as endogenous (e.g., naturally-occurring) proteolytic fragments can be

generated or identified, for instance, from various cellular fractions (e.g., cytosolic, membrane, nuclear) and/or growth medium of various cell-types, including, for example, immune cells such as monocytes, dendritic cells, macrophages (e.g., RAW 264.7 macrophages), neutrophils, eosinophils, basophils, and lymphocytes, such as B-cells and T-cells (e.g., CD4+ helper and CD8+ killer cells), including primary T-cells and T-cell lines such as Jurkat T-cells, as well as natural killer (NK) cells.

In certain embodiments, protein fragments such as endogenous proteolytic fragments, however generated, can be identified by techniques such as mass-spectrometry, or equivalent techniques. Once an in vitro or endogenously identified protein fragment has been generated or identified, it can be mapped or sequenced, and, for example, cloned into an expression vector for recombinant production, or produced synthetically.

A wide variety of proteases can be used to produce, identify, derive, or characterize the sequence of AARS protein fragments such as proteolytic fragments. Generally, proteases are usually classified according to three major criteria: (i) the reaction catalyzed, (ii) the chemical nature of the catalytic site, and (iii) the evolutionary relationship, as revealed by the structure. General examples of proteases or proteinases, as classified by mechanism of catalysis, include aspartic proteases, serine proteases, cysteine proteases, and metalloproteases.

Most aspartic proteases belong to the pepsin family. This family includes digestive enzymes, such as pepsin and chymosin, as well as lysosomal cathepsins D and processing enzymes such as renin, and certain fungal proteases (e.g., penicillopepsin, rhizopuspepsin, endothiapepsin). A second family of aspartic proteases includes viral proteinases such as the protease from the AIDS virus (HIV), also called retropepsin.

Serine proteases include two distinct families. First, the chymotrypsin family, which includes the mammalian enzymes such as chymotrypsin, trypsin, elastase, and kallikrein, and second, the substilisin family, which includes the bacterial enzymes such as subtilisin. The general 3D structure between these two families is different, but they have the same active site geometry, and catalysis proceeds via the same mechanism. The serine proteases exhibit different substrate specificities, differences which relate mainly to amino acid substitutions in the various enzyme subsites (substrate residue interacting sites). Some serine proteases have an extended interaction site with the substrate whereas others have a specificity that is restricted to the P1 substrate residue.

The cysteine protease family includes the plant proteases such as papain, actinidin, and bromelain, several mammalian lysosomal cathepsins, the cytosolic calpains (calcium-activated), as well as several parasitic proteases (e.g., *Trypanosoma*, *Schistosoma*). Papain is the archetype and the best studied member of the family. Recent elucidation of the X-ray structure of the Interleukin-1-beta Converting Enzyme has revealed a novel type of fold for cysteine proteinases.

The metalloproteases are one of the older classes of proteases, found in bacteria, fungi, and higher organisms. They differ widely in their sequences and their 3D structures, but the great majority of enzymes contain a zinc atom that is catalytically active. In some cases, zinc may be replaced by another metal such as cobalt or nickel without loss of proteolytic activity. Bacterial thermolysin has been well characterized and its crystallographic structure indicates that zinc is bound by two histidines and one glutamic acid. Many metalloproteases contain the sequence motif HEXXH, which provides two histidine ligands for the zinc. The third ligand is

either a glutamic acid (thermolysin, neprilysin, alanyl aminopeptidase) or a histidine (astacin, serralysin).

Illustrative proteases include, for example, achromopeptidase, aminopeptidase, ancrod, angiotensin converting enzyme, bromelain, calpain, calpain I, calpain II, carbox- 5 ypeptidase A, carboxypeptidase B, carboxypeptidase G, carboxypeptidase P, carboxypeptidase W, carboxypeptidase Y, caspase 1, caspase 2, caspase 3, caspase 4, caspase 5, caspase 6, caspase 7, caspase 8, caspase 9, caspase 10, caspase 11, caspase 12, caspase 13, cathepsin B, cathepsin C, cathepsin 10 D, cathepsin E, cathepsin G, cathepsin H, cathepsin L, chymopapain, chymase, chymotrypsin, clostripain, collagenase, complement C1r, complement C1s, complement Factor D, complement factor I, cucumisin, dipeptidyl peptidase IV, elastase (leukocyte), elastase (pancreatic), endoproteinase 15 Arg-C, endoproteinase Asp-N, endoproteinase Glu-C, endoproteinase Lys-C, enterokinase, factor Xa, ficin, furin, granzyme A, granzyme B, HIV Protease, IGase, kallikrein tissue, leucine aminopeptidase (general), leucine aminopeptidase (cytosol), leucine aminopeptidase (microsomal), 20 matrix metalloprotease, methionine aminopeptidase, neutrase, papain, pepsin, plasmin, prolidase, pronase E, prostate specific antigen, protease alkalophilic from Streptomyces griseus, protease from Aspergillus, protease from Aspergillus saitoi, protease from Aspergillus sojae, protease (B. licheni- 25 formis) (alkaline or alcalase), protease from Bacillus polymyxa, protease from Bacillus sp, protease from Rhizopus sp., protease S, proteasomes, proteinase from Aspergillus oryzae, proteinase 3, proteinase A, proteinase K, protein C, pyroglutamate aminopeptidase, rennin, rennin, streptokinase, 30 subtilisin, thermolysin, thrombin, tissue plasminogen activator, trypsin, tryptase and urokinase.

Certain embodiments relate to isolated AARS polypeptides, comprising, consisting essentially of, or consisting of amino acid sequences that have been derived from endog- 35 enous, naturally-occurring AARS polypeptide fragments, and pharmaceutical compositions comprising said fragments, and methods of use thereof. These and related embodiments can be generated or identified in vivo, ex vivo, and/or in vitro. In certain preferred in vitro embodiments, AARS proteolytic 40 fragments are generated or identified by incubating an AARS polypeptide, such as a full-length AARS polypeptide, with one or more isolated human proteases, mainly those proteases that are endogenous or natural to humans, such as elastase and others described herein and known in the art. Other embodi- 45 ments relate to isolated AARS polypeptides, comprising, consisting essentially of, or consisting of amino acid sequences that have been derived from endogenous, naturally-occurring AARS splice variants, and pharmaceutical compositions comprising said fragments, and methods of use 50 thereof. Essentially, AARS protein fragment can be isolated from samples that have been exposed to proteases, whether in vivo or in vitro.

In certain embodiments, AARS protein fragments can be identified by techniques such as mass-spectrometry, or 55 equivalent techniques. Merely by way of illustration and not limitation, in certain embodiments the proteomes from various cell types, tissues, or body fluids from a variety of physiological states (e.g., hypoxia, diet, age, disease) or fractions thereof may be separated by 1D SDS-PAGE and the gel lanes 60 cut into bands at fixed intervals; after which the bands may be optionally digested with an appropriate protease, such as trypsin, to release the peptides, which may then be analyzed by 1D reverse phase LC-MS/MS. The resulting proteomic data may be integrated into so-called peptographs, which 65 plot, in the left panel, sequence coverage for a given protein in the horizontal dimension (N to C terminus, left to right)

58

versus SDS-PAGE migration in the vertical dimension (high to low molecular weight, top to bottom). The specific peptide fragments can then be sequenced or mapped. In certain embodiments, the AARS reference fragment may be characterized by its unique molecular weight, as compared, for example, to the molecular weight of the corresponding full-length AARS.

As noted above, embodiments of the present invention include the AARS polypeptides set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9. Also included are "variants" of the AARS reference polypeptides. The recitation polypeptide "variant" refers to polypeptides that are distinguished from a reference AARS polypeptide by the addition, deletion, and/or substitution of at least one amino acid residue, and which typically retain (e.g., mimic) or modulate (e.g., antagonize) one or more non-canonical activities of a reference AARS polypeptide.

Moreover human Methionyl tRNA synthetases include several hundred highly related polymorphic forms, and these are known in the art to be at least partially functionally interchangeable. It would thus be a routine matter to select a naturally occurring variant of Methionyl tRNA synthetase, including, for example the single nucleotide polymorphic forms listed in Table A to create an AARS polypeptide containing one or more amino acid changes based on the sequence of any of the homologues, orthologs, and naturally-occurring isoforms of human as well as other species of Methionyl tRNA synthetase.

TABLE A

Humar	n Methionyl	tRNA syntheta	se SNPs
Gene Bank Accession Number	Nucleotide Change	Gene Bank Accession Number	Nucleotide Change
rs118120417	A/C	rs36085497	A/G
rs118042640	C/T	rs36052671	-/A
rs117948353	A/G	rs36019863	-/c
rs117914586	A/G	rs35924774	-/A
rs117912819	G/T	rs35843015	C/T
rs117895855	C/T	rs35786533	-/T
rs117833843	C/T	rs35674919	-/T
rs117762340	A/G	rs35515685	-/A
rs117659381	A/C	rs35405310	A/G
rs117633211	A/G	rs35354985	-/c
rs117476973	A/G	rs35152353	-/T
rs117420860	C/T	rs35066896	-/G
rs117385528	C/T	rs34943124	G/T
rs117328675	C/T	rs34537592	-/T
rs117316797	A/G	rs34526594	-/A
rs117101415	C/T	rs34351056	-/T
rs117093278	C/T	rs34251115	-/A
rs116975692	A/T	rs34238800	-/T
rs116920370	C/T	rs34010387	-/T

60
TABLE A-continued

Huma	n Methionyl	tRNA syntheta	se SNPs	-	Huma	n Methionyl	tRNA syntheta	se SNPs
rs116899349	G/T	rs28382855	C/T	-	rs112404047	A/G	rs67291515	-/A
rs116795882	A/C	rs28382854	G/T	5	rs112327724	G/T	rs61935708	A/G
rs116714288	A/G	rs17119735	A/G		rs112196139	C/T	rs61935705	A/T
rs116260314	A/G	rs12829556	C/T		rs112116601	A/C	rs61935704	C/T
rs116178189	A/C	rs12579188	C/T	10	rs111995146	C/T	rs61935703	G/T
rs116119105	C/T	rs12427340	A/T		rs111987764	A/G	rs61935702	G/T
rs115823928	C/G	rs12425095	A/G		rs111969677	A/G	rs61935701	C/T
rs115762355	A/T	rs12372044	A/G	15	rs111812045	A/T	rs61349055	C/T
rs115447727	A/G	rs12372043	A/G		rs111647559	A/C	rs61159732	A/T
rs115402894	C/T	rs12371589	A/T		rs111609806	A/T	rs60709374	A/T
rs115111847	A/T	rs12367179	G/T	20	rs111515147	C/T	rs60164085	-/T
rs114933325	C/T	rs12366545	A/T		rs111451812	A/G	rs60038237	-/TT
rs114852246	A/C	rs12315660	A/G		rs111321301	C/T	rs59457163	C/T
rs114790812	C/T	rs12298311	A/G	25	rs111306654	-/G	rs59160934	$-/\mathtt{TTT}$
rs114718314	A/T	rs11831454	A/G		rs111287174	C/T	rs59108082	G/T
rs114665682	A/G	rs11831009	G/T		rs111257978	A/C	rs59072876	A/T
rs114609270	A/G	rs11616111	C/T	30	rs111226219	C/G	rs58998083	G/T
rs114325763	C/T	rs11614017	C/T		rs80291028	G/T	rs58844705	A/T
rs114312802	A/G	rs11547020	C/T		rs80290696	G/T	rs58533497	A/T
rs113957069	C/T	rs11540811	G/T	35	rs79885244	G/T	rs58353609	A/T
rs113917592	C/T	rs11540809	C/G		rs79870226	A/G	rs58338213	-/T
rs113908259	C/T	rs11540808	A/T		rs79791981	C/G	rs58223781	-/T
rs113808165	A/G	rs11172245	C/T	40	rs79748949	C/T	rs58057273	-/GT
rs113796766	A/T	rs11172243	A/T		rs79580523	A/T	rs57976382	-/ATATA
rs113773319	C/G	rs11172241	C/T		rs79531790	C/T	rs57959685	A/T
rs113617531	C/G	rs11172240	C/T	45	rs79354820	C/T	rs57934778	-/AATA
rs113549256	C/T	rs11172239	C/T		rs78854130	A/C	rs57598635	A/T
rs113274678	C/T	rs11172237	A/T		rs78617675	C/T	rs57586332	A/T
rs113263363	-/c	rs11172236	A/T	50	rs78563683	C/T	rs57440582	A/T
rs113171815	A/G	rs11172234	C/G		rs78509000	A/C	rs57411748	C/T
rs113090086	C/G	rs11172233	A/G		rs78451666	A/G	rs57329666	C/T
rs112917609	C/T	rs11172232	A/G	55	rs78442993	C/T	rs57276054	-/T
rs112829410	A/T	rs11172231	A/G	00	rs78377626	A/G	rs56986351	A/T
rs112799168	A/G	rs10783829	A/G		rs78220036	C/T	rs56354627	C/G
rs112714462	A/G	rs10715375	-/A	60	rs78069812	A/G	rs56198826	C/T
rs112710318	-/A	rs71084758	-/T	00	rs78027605	A/G	rs56189503	-/A
rs112687648	-/GA	rs68188746	-/T $/$ TT		rs77981382	C/T	rs56126868	-/TAC
rs112678779	C/T	rs68097611	-/T		rs77902929	-/TAGTT	rs56071532	-/AA
rs112660326	A/G	rs67410914	-/TG	65	rs77631229	C/G	rs56060087	-/CA

62
TABLE A-continued

	TABLE	A-continued	1			TABLE	A-continue	ii
Huma	an Methiony	l tRNA syntheta	ase SNPs		Huma	an Methion	yl tRNA synthet	ase SNPs
rs77551014	C/T	rs56032642	A/G	5	rs72141714	-/AT	rs1669294	C/T
rs77389838	A/G	rs55985221	-/A	,	rs72047411	-/TG	rs1669293	A/C
rs77298381	A/G	rs55964032	-/G		rs72039971	-/AA	rs1669292	A/C
rs77159901	A/G	rs55901364	A/T	10	rs71858271	-/A	rs1669291	A/C
rs76780434	-/AAA	rs55826438	-/T	10	rs71847544	-/CA	rs1629410	C/G
rs76763017	C/G	rs55813010	A/G		rs71770989	-/GA	rs1299737	C/T
rs76608716	A/G	rs55784218	$-/\mathtt{TAT}$		rs71622721	C/T	rs1284606	A/G
rs76535211	C/G	rs55757029	$-/\mathtt{TA}$	15	rs71448526	-/T	rs1284467	C/T
rs76515218	C/T	rs55742554	$-/\mathtt{TATA}$		rs71446621	A/G	rs1284465	A/G
rs76477870	A/G	rs55727879	A/T		rs71445351	C/G	rs1054519	A/C
rs76399088	A/G	rs55702220	-/A	20	rs71445350	C/T	rs1054403	A/C/G
rs76305181	G/T	rs9737891	A/G		rs71445349	A/G	rs899653	C/T
rs76150936	C/G	rs7969683	C/T		rs71445348	A/G	rs796546	C/T
rs76119157	A/G	rs7485148	G/T	25	rs71432309	A/G	rs776039	A/G
rs75719980	A/G	rs7314803	A/T		rs71432308	A/G	rs776038	G/T
rs75683176	A/G	rs7304550	A/G		rs71360927	A/G	rs747341	C/G
rs75617785	G/T	rs7300617	A/C	30	rs71317711	C/T	rs747340	C/G
rs75549553	A/G	rs7134758	C/T		rs71280719	-/T	rs747339	C/T
rs75425333	C/T	rs5029303	C/T		rs71280718	-/T	rs537161	C/T
rs75308443	A/T	rs4760273	C/T	35	rs71084766	-/T	rs508904	A/G
rs75040517	A/G	rs4583018	C/T		rs71084765	-/A	rs496245	C/G
rs74978137	A/T	rs2943696	A/G		rs71084764	-/G	rs474738	C/T
rs74974479	C/T	rs2928382	C/T	40	rs71084763	-/A	rs474544	C/T
rs74921288	C/T	rs2672571	C/T		rs71084762	-/A		
rs74875570	C/T	rs2620680	A/G		rs71084761	-/T		
rs74832951	A/G	rs2620676	A/T	45	rs71084759	-/A		
rs74683277	C/T	rs2600004	A/G	,,,	Gene Bank			
rs74625799	C/T	rs2599998	A/G		Accession Number	Nucleot:	ide Change	
rs74520477	C/G	rs2459050	C/T	50	rs76311414		TATTTTTAATTTTAA	\TTTT
rs73344102	A/G	rs2305390	A/G	30	rs55784614	-/TTATA		
rs73344100	G/T	rs2290297	A/G					
rs73344088	A/G	rs2278846	C/T		rs57783219		GGTAGAGGGTAGAGG	
rs73344082	C/T	rs1871547	A/T	55	rs58931225	-/CACACA		
rs72386117	-/TT	rs1709874	C/T		rs67907939	-/TATATA		
rs72343151	-/CA	rs1709871	A/C		rs59488863	-/ATTATA	ΑT	
rs72306101	-/AT	rs1679366	A/G	60	rs71276496	-/ GAGGTTG0	GGGGTCAGCCCCCC	GCCCGGCCAGCTGC
rs72264062	_/AT	rs1679365	A/G			CCCGTCC	GGAGGGAGGTTGAGG GCCGCCCGCCCGGGA	GGTCAGCCCCCCCC
rs72260515	-/TATA	rs1678537	A/G			GTCAGCC	CCCGCCCGGCCAGCC GGGGGGTCAGCCCCC	CGCCCGTCCGGGAG
				65		CCCGTCC	GGAGGGAGGTGGGG	GGTCAGCCCCCCG
rs72229554	-/AT	rs1678510	G/T			CCCGGCC	AGCCGCCCCGCCCGGG	DAGG

	Human	Methionyl	tRNA	synthetase	SNPs
rs710847	760	-/татататт	Ά		
rs712807	717	-/TCTACC			
rs717595	599	(LARGEDELE	TION)		
rs716586	512	(LARGEDELE	TION)		
rs719317	724	-/ACACACAC			
rs722701	156	-/CACACACA	.CACAC	ACACACACACA	

In certain embodiments, a polypeptide variant is distinguished from a reference polypeptide by one or more substitutions, which may be conservative or non-conservative, as described herein and known in the art. In certain embodiments, the polypeptide variant comprises conservative substitutions and, in this regard, it is well understood in the art that some amino acids may be changed to others with broadly similar properties without changing the nature of the activity of the polypeptide.

In certain embodiments, a variant polypeptide includes an amino acid sequence having at least about 50%, 55%, 60%, 25 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or more sequence identity or similarity to a corresponding sequence of an AARS reference polypeptide, as described herein, and substantially retains the noncanonical activity of that reference polypeptide. Also 30 included are sequences differing from the reference AARS sequences by the addition, deletion, or substitution of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 or more amino acids but which retain the properties of the reference AARS 35 polypeptide. In certain embodiments, the amino acid additions or deletions occur at the C-terminal end and/or the N-terminal end of the AARS reference polypeptide. In certain embodiments, the amino acid additions include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50 or 40 more wild-type residues (i.e., from the corresponding fulllength AARS polypeptide) that are proximal to the C-terminal end and/or the N-terminal end of the AARS reference polypeptide.

In certain embodiments, variant polypeptides differ from 45 the corresponding AARS reference sequences by at least 1% but less than 20%, 15%, 10% or 5% of the residues. (If this comparison requires alignment, the sequences should be aligned for maximum similarity. "Looped" out sequences from deletions or insertions, or mismatches, are considered 50 differences.) The differences are, suitably, differences or changes at a non-essential residue or a conservative substitution. In certain embodiments, the molecular weight of a variant AARS polypeptide differs from that of the AARS reference polypeptide by about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 55 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, or more.

Also included are biologically active "fragments" of the AARS reference polypeptides, i.e., biologically active fragments of the AARS protein fragments. Representative biologically active fragments generally participate in an interaction, e.g., an intramolecular or an inter-molecular interaction. An inter-molecular interaction can be a specific binding interaction or an enzymatic interaction. An inter-molecular interaction can be between an AARS polypeptide and a cellular binding partner, such as a cellular receptor or other host molecule that participates in the non-canonical activity of the

64

AARS polypeptide. In some embodiments, AARS proteins, variants, and biologically active fragments thereof, bind to one or more cellular binding partners with an affinity of at least about 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, or 50 nM. The binding affinity of an AARS protein fragment for a selected cellular binding partner, particularly a binding partner that participates in a non-canonical activity, is typically stronger 10 than that of the AARS protein fragment's corresponding fulllength AARS polypeptide, by at least about $1.5 \times$, $2 \times$, $2.5 \times$, $3\times$, $3.5\times$, $4\times$, $4.5\times$, $5\times$, $6\times$, $7\times$, $8\times$, $9\times$, $10\times$, $15\times$, $20\times$, $25\times$, 30x, 40x, 50x, 60x, 70x, 80x, 90x, 100x, 200x, 300x, 400x, 500×, 600×, 700×, 800×, 900×, 1000× or more (including all integers in between). The binding affinity of an AARS protein fragment for a binding partner that participates in at least one canonical activity of an AARS is typically weaker than that of the AARS protein fragment's corresponding full-length AARS polypeptide, by at least about $1.5 \times, 2 \times, 2.5 \times, 3 \times, 3.5 \times$, $4\times$, $4.5\times$, $5\times$, $6\times$, $7\times$, $8\times$, $9\times$, $10\times$, $15\times$, $20\times$, $25\times$, $30\times$, $40\times$, 50x, 60x, 70x, 80x, 90x, 100x, 200x, 300x, 400x, 500x, $600 \times$, $700 \times$, $800 \times$, $900 \times$, $1000 \times$ or more.

Typically, biologically active fragments comprise a domain or motif with at least one activity of an AARS reference polypeptide and may include one or more (and in some cases all) of the various active domains, and include fragments having a non-canonical activity. In some cases, biologically active fragments of an AARS polypeptide have a biological activity that is unique to the particular, truncated fragment, such that the full-length AARS polypeptide may not have that activity. In certain cases, the biological activity may be revealed by separating the biologically active AARS polypeptide fragment from the other full-length AARS polypeptide sequences, or by altering certain residues of the full-length AARS wild-type polypeptide sequence to unmask the biologically active domains.

A biologically active fragment of an AARS reference polypeptide can be a polypeptide fragment which is, for example, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 450, 500, 550, 600, 650, 700, 750 or more contiguous or noncontiguous amino acids, including all integers (e.g., 101, 102, 103) and ranges (e.g., 50-100, 50-150, 50-200) in between, of the amino acid sequences set forth in any one of the AARS reference polypeptides described herein, but typically exclude the full-length AARS. In certain embodiments, a biologically active fragment comprises a non-canonical activity-related sequence, domain, or motif. In certain embodiments, the C-terminal or N-terminal region of any AARS reference polypeptide may be truncated by about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, or 700 or more amino acids, or by about 10-50, 20-50, 50-100, 100-150, 150-200, 200-250, 250-300, 300-350, 350-400, 400-450, 450-500, 500-550, 550-600, 600-650, 650-700 or more amino acids, including all integers and ranges in between (e.g., 101, 102, 103, 104, 105), so long as the truncated AARS polypeptide retains the non-canonical activity of the reference polypeptide. Typically, the biologically-active fragment has no less than about 1%, about 5%, about 10%, about 25%, or about 50% of an activity of the biologically-active (i.e., non-canonical activity) AARS reference polypeptide from which it is derived. Exemplary methods for measuring such non-canonical activities are described in the Examples.

As noted above, an AARS polypeptide may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants of an AARS reference polypeptide can be prepared by mutations in the DNA. Methods for mutagenesis and nucleotide sequence alterations are well known in the art. See, for example, Kunkel (1985, Proc. Natl. Acad. Sci. USA. 82: 488-492), Kunkel et al., (1987, Methods in Enzymol, 154: 367-382), U.S. Pat. No. 4,873,192, Watson, J. D. et al., ("Molecular Biology of the Gene", Fourth Edition, Benjamin/ Cummings, Menlo Park, Calif., 1987) and the references cited therein. Guidance as to appropriate amino acid substitutions that do not affect biological activity of the protein of 15 interest may be found in the model of Dayhoff et al., (1978) Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found., Washington, D.C.).

Similarly it is within the skill in the art to address and/or mitigate immunogenicity concerns if they arise using an AARS polypeptide, e.g., by the use of automated computer recognition programs to identify potential T cell epitopes, and directed evolution approaches to identify less immunogenic forms

Methods for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property are known in the art. Such methods are adaptable for rapid screening of the gene libraries generated by combinatorial mutagenesis of AARS polypeptides. Recursive ensemble mutagenesis (REM), a technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify AARS polypeptide variants (Arkin and Yourvan (1992) *Proc. Natl. Acad. Sci. USA* 89: 7811-7815; Delgrave et al., (1993) 35 *Protein Engineering*, 6: 327-331). Conservative substitutions, such as exchanging one amino acid with another having similar properties, may be desirable as discussed in more detail below.

Biologically active truncated and/or variant AARS polypeptides may contain conservative amino acid substitutions at various locations along their sequence, as compared to a reference AARS amino acid residue. Additionally, naturally occurring variants of AARS proteins have been sequenced, and are known in the art to be at least partially functionally interchangeable. It would thus be a routine matter to select an amino acid position to introduce a conservative, or non conservative mutation into an AARS polypeptide based on naturally occurring sequence variation among the known AARS protein homologues, orthologs, and naturally occurring isoforms of human as well as other species of an AARS protein.

A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art, which can be generally sub-classified as follows:

Acidic: The residue has a negative charge due to loss of H ion at physiological pH and the residue is attracted by aqueous solution so as to seek the surface positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium at physiological pH. Amino acids having an acidic side chain include glutamic acid and aspartic acid.

Basic: The residue has a positive charge due to association 65 with H ion at physiological pH or within one or two pH units thereof (e.g., histidine) and the residue is attracted by aqueous

66

solution so as to seek the surface positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium at physiological pH. Amino acids having a basic side chain include arginine, lysine and histidine.

Charged: The residues are charged at physiological pH and, therefore, include amino acids having acidic or basic side chains (i.e., glutamic acid, aspartic acid, arginine, lysine and histidine).

Hydrophobic: The residues are not charged at physiological pH and the residue is repelled by aqueous solution so as to seek the inner positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium. Amino acids having a hydrophobic side chain include tyrosine, valine, isoleucine, leucine, methionine, phenylalanine and tryptophan.

Neutral/polar: The residues are not charged at physiological pH, but the residue is not sufficiently repelled by aqueous solutions so that it would seek inner positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium. Amino acids having a neutral/polar side chain include asparagine, glutamine, cysteine, histidine, serine and threonine.

This description also characterizes certain amino acids as "small" since their side chains are not sufficiently large, even if polar groups are lacking, to confer hydrophobicity. With the exception of proline, "small" amino acids are those with four carbons or less when at least one polar group is on the side chain and three carbons or less when not. Amino acids having a small side chain include glycine, serine, alanine and threonine. The gene-encoded secondary amino acid proline is a special case due to its known effects on the secondary conformation of peptide chains. The structure of proline differs from all the other naturally-occurring amino acids in that its side chain is bonded to the nitrogen of the α -amino group, as well as the α -carbon. Several amino acid similarity matrices are known in the art (see e.g., PAM120 matrix and PAM250 matrix as disclosed for example by Dayhoff et al., 1978, A model of evolutionary change in proteins). Matrices for determining distance relationships In M. O. Dayhoff, (ed.), Atlas of protein sequence and structure, Vol. 5, pp. 345-358, National Biomedical Research Foundation, Washington D.C.; and by Gonnet et al., (Science, 256: 14430-1445, 1992). however, include proline in the same group as glycine, serine, alanine and threonine. Accordingly, for the purposes of the present invention, proline is classified as a "small" amino acid.

The degree of attraction or repulsion required for classification as polar or nonpolar is arbitrary and, therefore, amino acids specifically contemplated by the invention have been classified as one or the other. Most amino acids not specifically named can be classified on the basis of known behavior.

Amino acid residues can be further sub-classified as cyclic or non-cyclic, and aromatic or non-aromatic, self-explanatory classifications with respect to the side-chain substituent groups of the residues, and as small or large. The residue is considered small if it contains a total of four carbon atoms or less, inclusive of the carboxyl carbon, provided an additional polar substituent is present; three or less if not. Small residues are, of course, always non-aromatic. Dependent on their structural properties, amino acid residues may fall in two or more classes. For the naturally-occurring protein amino acids, sub-classification according to this scheme is presented in Table B.

	Amino acid sub-classification
Sub-classes	Amino acids
Acidic	Aspartic acid, Glutamic acid
Basic	Noncyclic: Arginine, Lysine; Cyclic: Histidine
Charged	Aspartic acid, Glutamic acid, Arginine, Lysine, Histidine
Small	Glycine, Serine, Alanine, Threonine, Proline
Polar/neutral	Asparagine, Histidine, Glutamine, Cysteine, Serine, Threonine
Polar/large	Asparagine, Glutamine
Hydrophobic	Tyrosine, Valine, Isoleucine, Leucine, Methionine, Phenylalanine, Tryptophan
Aromatic	Tryptophan, Tyrosine, Phenylalanine
Residues that influence chain orientation	Glycine and Proline

Conservative amino acid substitution also includes groupings based on side chains. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, 20 leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a 25 group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfurcontaining side chains is cysteine and methionine. For example, it is reasonable to expect that replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid will not have a major effect on the properties of the resulting variant polypeptide. Whether an amino acid change results in a functional truncated and/or variant AARS polypeptide can readily be determined by assaying its non-canonical activity, as described herein. Conservative substitutions are shown in Table C under the heading of exemplary substitutions. Amino acid substitutions falling within the scope of the invention, are, in general, accomplished by selecting substitutions that do not differ significantly in their effect on maintaining (a) the structure of the peptide backbone in the area of the substitution, (b) the charge or hydrophobicity of the molecule at the target site, (c) the bulk of the side chain, or (d) the biological function. After the substitutions are introduced, the variants are screened for biological activity.

TABLE C

	Exemplary Amino Acid Substitut	ions
Original Residue	Exemplary Substitutions	Preferred Substitutions
Ala	Val, Leu, Ile	Val
Arg	Lys, Gln, Asn	Lys
Asn	Gln, His, Lys, Arg	Gln
Asp	Glu	Glu
Cys	Ser	Ser
Gln	Asn, His, Lys,	Asn
Glu	Asp, Lys	Asp
Gly	Pro	Pro
His	Asn, Gln, Lys, Arg	Arg
Ile	Leu, Val, Met, Ala, Phe, Norleu	Leu
Leu	Norleu, Ile, Val, Met, Ala, Phe	Ile
Lys	Arg, Gln, Asn	Arg
Met	Leu, Ile, Phe	Leu
Phe	Leu, Val, Ile, Ala	Leu
Pro	Gly	Gly
Ser	Thr	Thr

_		Exemplary Amino Acid Substitut	tions
5	Original Residue	Exemplary Substitutions	Preferred Substitutions
_	Thr	Ser	Ser
	Trp	Tyr	Tyr
	Tyr	Trp, Phe, Thr, Ser	Phe
	Val	Ile, Leu, Met, Phe, Ala, Norleu	Leu

Alternatively, similar amino acids for making conservative substitutions can be grouped into three categories based on the identity of the side chains. The first group includes glutamic acid, aspartic acid, arginine, lysine, histidine, which all have charged side chains; the second group includes glycine, serine, threonine, cysteine, tyrosine, glutamine, asparagine; and the third group includes leucine, isoleucine, valine, alanine, proline, phenylalanine, tryptophan, methionine, as described in Zubay, G., *Biochemistry*, third edition, Wm.C. Brown Publishers (1993).

Thus, a predicted non-essential amino acid residue in a truncated and/or variant AARS polypeptide is typically replaced with another amino acid residue from the same side chain family. Alternatively, mutations can be introduced randomly along all or part of an AARS coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for an activity of the parent polypeptide to identify mutants which retain that activity. Following mutagenesis of the coding sequences, the encoded peptide can be expressed recombinantly and the activity of the peptide can be determined A "non-essential" amino acid residue is a residue that can be altered from the reference sequence of an embodiment polypeptide without abolishing or substantially altering one or more of its activities. Suitably, the alteration does not substantially abolish one of these activities, for example, the activity is at least 20%, 40%, 60%, 70% or 80% 100%, 500%, 1000% or more of the reference AARS sequence. An "essential" amino acid residue is a residue that, when altered from the reference sequence of an AARS polypeptide, results in abolition of an activity of the parent molecule such that less than 20% of the reference activity is present. For example, such essential amino acid residues include those that are conserved in AARS polypeptides across different species, including those sequences that are conserved in the active binding site(s) or motif(s) of AARS polypeptides from various sources.

In general, polypeptides and fusion polypeptides (as well as their encoding polynucleotides) are isolated. An "isolated" polypeptide or polynucleotide is one that is removed from its original environment. For example, a naturally-occurring protein is isolated if it is separated from some or all of the coexisting materials in the natural system. Preferably, such polypeptides are at least about 90% pure, more preferably at least about 95% pure and most preferably at least about 99% pure. A polynucleotide is considered to be isolated if, for example, it is cloned into a vector that is not a part of the natural environment.

Certain embodiments also encompass dimers of AARS polypeptides. Dimers may include, for example, homodimers between two identical AARS polypeptides, heterodimers between two different AARS polypeptides (e.g., a full-length YRS polypeptide and a truncated YRS polypeptide; a truncated YRS polypeptide and a truncated WRS polypeptide, and/or heterodimers between an AARS polypeptide and a heterologous polypeptide. Certain heterodimers, such as

those between an AARS polypeptide and a heterologous polypeptide, may be bi-functional, as described herein.

Also included are monomers of AARS polypeptides, including isolated AARS polypeptides monomers that do not substantially dimerize with a second AARS polypeptide, 5 whether due to one or more substitutions, truncations, deletions, additions, chemical modifications, or a combination of these alterations. In certain embodiments, monomeric AARS polypeptides possess biological activities, including non-canonical activities, which are not possessed by dimeric or 10 multimeric AARS polypeptide complexes.

Certain embodiments of the present invention also contemplate the use of modified AARS polypeptides, including modifications that improved the desired characteristics of an AARS polypeptide, as described herein. Modifications of 15 AARS polypeptides of the invention include chemical and/or enzymatic derivatizations at one or more constituent amino acid, including side chain modifications, backbone modifications, and N- and C-terminal modifications including acetylation, hydroxylation, methylation, amidation, and the attachment of carbohydrate or lipid moieties, cofactors, and the like. Exemplary modifications also include pegylation of an AARS polypeptide (see, e.g., Veronese and Harris, *Advanced Drug Delivery Reviews* 54: 453-456, 2002; and Pasut et al., *Expert Opinion. Ther. Patents* 14(6) 859-894 2004, both 25 herein incorporated by reference).

PEG is a well-known polymer having the properties of solubility in water and in many organic solvents, lack of toxicity, and lack of immunogenicity. It is also clear, colorless, odorless, and chemically stable. For these reasons and 30 others, PEG has been selected as the preferred polymer for attachment, but it has been employed solely for purposes of illustration and not limitation. Similar products may be obtained with other water-soluble polymers, including without limitation; polyvinyl alcohol, other poly(alkylene oxides) 35 such as poly(propylene glycol) and the like, poly(oxyethylated polyols) such as poly(oxyethylated glycerol) and the like, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl purrolidone, poly-1,3-dioxolane, poly-1,3,6-trioxane, ethylene/maleic anhydride, and polyaminoacids. One 40 skilled in the art will be able to select the desired polymer based on the desired dosage, circulation time, resistance to proteolysis, and other considerations.

In particular a wide variety of PEG derivatives are both available and suitable for use in the preparation of PEG-45 conjugates. For example, NOF Corp.'s PEG reagents sold under the trademark SUNBRIGHT® Series provides numerous PEG derivatives, including methoxypolyethylene glycols and activated PEG derivatives such as methoxy-PEG amines, maleimides, N-hydroxysuccinimide esters, and carboxylic 50 acids, for coupling by various methods to the N-terminal, C-terminal or any internal amino acid of the AARS polypeptide. Nektar Therapeutics' Advanced PEGylation technology also offers diverse PEG-coupling technologies to potentially improve the safety and efficacy of an AARS polypeptide 55 based therapeutic.

A search of patents, published patent applications, and related publications will also provide those skilled in the art reading this disclosure with significant possible PEG-coupling technologies and PEG-derivatives. For example, U.S. 60 Pat. Nos. 6,436,386; 5,932,462; 5,900,461; 5,824,784; and 4,904,584; the contents of which are incorporated by reference in their entirety, describe such technologies and derivatives, and methods for their manufacture.

In certain aspects, chemoselective ligation technology may 65 be utilized to modify AARS polypeptides of the invention, such as by attaching polymers in a site-specific and controlled

70

manner. Such technology typically relies on the incorporation of chemoselective anchors into the protein backbone by either chemical, or recombinant means, and subsequent modification with a polymer carrying a complementary linker. As a result, the assembly process and the covalent structure of the resulting protein-polymer conjugate may be controlled, enabling the rational optimization of drug properties, such as efficacy and pharmacokinetic properties (see, e.g., Kochendoerfer, *Current Opinion in Chemical Biology* 9:555-560, 2005).

In other embodiments, fusion proteins of AARS polypeptide to other proteins are also included, and these fusion proteins may increase the AARS polypeptide's biological activity, secretion, targeting, biological life, ability to penetrate cellular membranes, or the blood brain barrier, or pharmacokinetic properties. Examples of fusion proteins that improve pharmacokinetic properties ("PK modifiers") include without limitation, fusions to human albumin (Osborn et al.: Eur. J. Pharmacol. 456(1-3): 149-158, (2002)), antibody Fc domains, poly Glu or poly Asp sequences, and transferrin. Additionally, fusion with conformationally disordered polypeptide sequences composed of the amino acids Pro, Ala, and Ser ('PASylation') or hydroxyethyl starch (sold under the trademark HESYLATION®) provides a simple way to increase the hydrodynamic volume of the AARS polypeptide. This additional extension adopts a bulky random structure, which significantly increases the size of the resulting fusion protein. By this means the typically rapid clearance of smaller AARS polypeptides via kidney filtration is retarded by several orders of magnitude. Additionally use of Ig G fusion proteins has also been shown to enable some fusion protein proteins to penetrate the blood brain barrier (Fu et al., (2010) Brain Res. 1352:208-13).

Examples of fusion proteins that improve penetration across cellular membranes include fusions to membrane translocating sequences. In this context, the term "membrane translocating sequences" refers to naturally occurring and synthetic amino acid sequences that are capable of membrane translocation across a cellular membrane. Representative membrane translocating sequences include those based on the naturally occurring membrane translocating sequences derived from the Tat protein, and homeotic transcription protein Antennapedia, as well as synthetic membrane translocating sequences based in whole or part on poly Arginine and Lysine resides. Representative membrane translocating sequences include for example those disclosed in the following patents, U.S. Pat. No. 5,652,122; U.S. Pat. No. 5,670,617; U.S. Pat. No. 5,674,980; U.S. Pat. No. 5,747,641; U.S. Pat. No. 5,804,604; U.S. Pat. No. 6,316,003; U.S. Pat. No. 7,585, 834; U.S. Pat. No. 7,312,244; U.S. Pat. No. 7,279,502; U.S. Pat. No. 7,229,961; U.S. Pat. No. 7,169,814; U.S. Pat. No. 7,453,011; U.S. Pat. No. 7,235,695; U.S. Pat. No. 6,982,351; U.S. Pat. No. 6,605,115; U.S. Pat. No. 7,306,784; U.S. Pat. No. 7,306,783; U.S. Pat. No. 6,589,503; U.S. Pat. No. 6,348, 185; U.S. Pat. No. 6,881,825; U.S. Pat. No. 7,431,915; WO0074701A2; WO2007111993A2; WO2007106554A2; WO02069930A1; WO03049772A2; WO03106491A2; and WO2008063113A1.

It will be appreciated that a flexible molecular linker (or spacer) optionally may be interposed between, and covalently join, the AARS polypeptide and any of the fusion proteins disclosed herein.

Additionally in some embodiments, the AARS polypeptide can include synthetic, or naturally occurring secretion signal sequences, derived from other well characterized secreted proteins. In some embodiments such proteins, may be processed by proteolytic cleavage to form the AARS

polypeptide in situ. Such fusions proteins include for example fusions of AARS polypeptide to ubiquitin to provide a new N-terminal amino acid, or the use of a secretion signal to mediate high level secretion of the AARS polypeptide into the extracellular medium, or N, or C-terminal epitope tags to 5 improve purification or detection.

The AARS polypeptides described herein may be prepared by any suitable procedure known to those of skill in the art, such as by recombinant techniques. In addition to recombinant production methods, polypeptides of the invention may be produced by direct peptide synthesis using solid-phase techniques (Merrifield, *J. Am. Chem. Soc.* 85:2149-2154 (1963)). Protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be achieved, for example, using Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Alternatively, various fragments may be chemically synthesized separately and combined using chemical methods to produce the desired molecule.

IV. AARS Polynucleotides

Embodiments of the present invention include polynucleotides that encode one or more newly identified protein fragments of an aminoacyl-tRNA synthetase (AARS), in addition 25 to complements, variants, and fragments thereof. In certain embodiments, an AARS polynucleotide encodes all or a portion of the AARS polypeptide reference sequence(s) as set forth in Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9, which represent splice variants, proteolytic fragments, or other type 30 of fragments of Methionyl tRNA synthetase. Certain embodiments include polynucleotides, encoding polypeptides or proteins that comprise the sequence of one or more splice junctions of those splice variants, in addition to complements, variants, and fragments thereof. In certain embodiments, 35 typically due to the singular nature of a selected AARS splice variant, which combines exons in a new or exceptional way, the AARS polynucleotide references sequences comprise a unique or exceptional splice junction. Certain embodiments exclude a corresponding full-length AARS polynucleotide.

Also included within the AARS polynucleotides of the present invention are primers, probes, antisense oligonucleotides, and RNA interference agents that comprise all or a portion of these reference polynucleotides, which are complementary to all or a portion of these reference polynucleotides, or which specifically hybridize to these reference polynucleotides, as described herein.

The term "polynucleotide" or "nucleic acid" as used herein designates mRNA, RNA, cRNA, cDNA or DNA. The term typically refers to polymeric form of nucleotides of at least 10 50 bases in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide. The term includes single and double stranded forms of DNA. The terms "DNA" and "polynucleotide" and "nucleic acid" refer to a DNA molecule that has been isolated free of total genomic 55 DNA of a particular species. Therefore, an isolated DNA segment encoding a polypeptide refers to a DNA segment that contains one or more coding sequences yet is substantially isolated away from, or purified free from, total genomic DNA of the species from which the DNA segment is obtained. Also 60 included are non-coding polynucleotides (e.g., primers, probes, oligonucleotides), which do not encode an AARS polypeptide. Included within the terms "DNA segment" and "polynucleotide" are DNA segments and smaller fragments of such segments, and also recombinant vectors, including, 65 for example, plasmids, cosmids, phagemids, phage, viruses, and the like.

72

Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials. Hence, the polynucleotides of the present invention, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably.

It is therefore contemplated that a polynucleotide fragment of almost any length may be employed; with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol. Included are polynucleotides of about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 41, 43, 44, 45, 46, 47, 48, 49, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 270, 280, 300, 350, 400, 450, 500, 550, 600, 650, 20 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000 or more (including all integers in between) bases in length, including any portion or fragment (e.g., greater than about 6, 7, 8, 9, or 10 nucleotides in length) of an AARS reference polynucleotide (e.g., base number X-Y, in which X is about 1-3000 or more and Y is about 10-3000 or more), or its complement.

Embodiments of the present invention also include "variants" of the AARS reference polynucleotide sequences. Polynucleotide "variants" may contain one or more substitutions, additions, deletions and/or insertions in relation to a reference polynucleotide. Generally, variants of an AARS reference polynucleotide sequence may have at least about 30%, 40% 50%, 55%, 60%, 65%, 70%, generally at least about 75%, 80%, 85%, desirably about 90% to 95% or more, and more suitably about 98% or more sequence identity to that particular nucleotide sequence as determined by sequence alignment programs described elsewhere herein using default parameters. In certain embodiments, variants may differ from a reference sequence by about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 41, 43, 44, 45, 46, 47, 48, 49, 50, 60, 70, 80, 90, 100 (including all integers in between) or more bases. In certain embodiments, such as when the polynucleotide variant encodes an AARS polypeptide having a non-canonical activity, the desired activity of the encoded AARS polypeptide is not substantially diminished relative to the unmodified polypeptide. The effect on the activity of the encoded polypeptide may generally be assessed as described herein.

Certain embodiments include polynucleotides that hybridize to a reference AARS polynucleotide sequence, or to their complements, under stringency conditions described below. As used herein, the term "hybridizes under low stringency, medium stringency, high stringency, or very high stringency conditions" describes conditions for hybridization and washing. Guidance for performing hybridization reactions can be found in Ausubel et al., (1998, supra), Sections 6.3.1-6.3.6. Aqueous and non-aqueous methods are described in that reference and either can be used.

Reference herein to low stringency conditions include and encompass from at least about 1% v/v to at least about 15% v/v formamide and from at least about 1 M to at least about 2 M salt for hybridization at 42° C., and at least about 1 M to at least about 2 M salt for washing at 42° C. Low stringency conditions also may include 1% Bovine Serum Albumin (BSA), 1 mM EDTA, 0.5 M NaHPO₄ (pH 7.2), 7% SDS for

hybridization at 65° C., and (i) 2×SSC, 0.1% SDS; or (ii) 0.5% BSA, 1 mM EDTA, 40 mM NaHPO₄ (pH 7.2), 5% SDS for washing at room temperature. One embodiment of low stringency conditions includes hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by two washes in 0.2×SSC, 0.1% SDS at least at 50° C. (the temperature of the washes can be increased to 55° C. for low stringency conditions).

Medium stringency conditions include and encompass from at least about 16% v/v to at least about 30% v/v forma- 10 mide and from at least about 0.5 M to at least about 0.9 M salt for hybridization at 42° C., and at least about 0.1 M to at least about 0.2 M salt for washing at 55° C. Medium stringency conditions also may include 1% Bovine Serum Albumin (BSA), 1 mM EDTA, 0.5 M NaHPO₄ (pH 7.2), 7% SDS for 15 hybridization at 65° C., and (i) 2×SSC, 0.1% SDS; or (ii) 0.5% BSA, 1 mM EDTA, 40 mM NaHPO₄ (pH 7.2), 5% SDS for washing at 60-65° C. One embodiment of medium stringency conditions includes hybridizing in 6×SSC at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 20 60° C. High stringency conditions include and encompass from at least about 31% v/v to at least about 50% v/v formamide and from about 0.01 M to about 0.15 M salt for hybridization at 42° C., and about 0.01 M to about 0.02 M salt for washing at 55° C.

High stringency conditions also may include 1% BSA, 1 mM EDTA, 0.5 M NaHPO₄ (pH 7.2), 7% SDS for hybridization at 65° C., and (i) 0.2×SSC, 0.1% SDS; or (ii) 0.5% BSA, 1 mM EDTA, 40 mM NaHPO₄ (pH 7.2), 1% SDS for washing at a temperature in excess of 65° C. One embodiment of high stringency conditions includes hybridizing in 6×SSC at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 65° C. One embodiment of very high stringency conditions includes hybridizing in 0.5 M sodium phosphate, 7% SDS at 65° C., followed by one or more washes in 0.2× 35 SSC, 1% SDS at 65° C.

Other stringency conditions are well known in the art and a skilled artisan will recognize that various factors can be manipulated to optimize the specificity of the hybridization. Optimization of the stringency of the final washes can serve to 40 ensure a high degree of hybridization. For detailed examples, see Ausubel et al., supra at pages 2.10.1 to 2.10.16 and Sambrook et al. (1989, supra) at sections 1.101 to 1.104.

While stringent washes are typically carried out at temperatures from about 42° C. to 68° C., one skilled in the art 45 will appreciate that other temperatures may be suitable for stringent conditions. Maximum hybridization rate typically occurs at about 20° C. to 25° C. below the T_m for formation of a DNA-DNA hybrid. It is well known in the art that the T_m is the melting temperature, or temperature at which two 50 complementary polynucleotide sequences dissociate. Methods for estimating T_m are well known in the art (see Ausubel et al., supra at page 2.10.8).

In general, the T_m of a perfectly matched duplex of DNA may be predicted as an approximation by the formula: T_m , 55 =81.5+16.6 (\log_{10} M)+0.41 (% G+C)-0.63 (% formamide)-(600/length) wherein: M is the concentration of Na⁺, preferably in the range of 0.01 molar to 0.4 molar; % G+C is the sum of guanosine and cytosine bases as a percentage of the total number of bases, within the range between 30% and 75% 60 G+C; % formamide is the percent formamide concentration by volume; length is the number of base pairs in the DNA duplex. The T_m of a duplex DNA decreases by approximately 1° C. with every increase of 1% in the number of randomly mismatched base pairs. Washing is generally carried out at T_m -15° C. for high stringency, or T_m -30° C. for moderate stringency.

74

In one example of a hybridization procedure, a membrane (e.g., a nitrocellulose membrane or a nylon membrane) containing immobilized DNA is hybridized overnight at 42° C. in a hybridization buffer (50% deionized formamide, 5×SSC, 5×Denhardt's solution (0.1% ficoll, 0.1% polyvinylpyrollidone and 0.1% bovine serum albumin), 0.1% SDS and 200 mg/mL denatured salmon sperm DNA) containing a labeled probe. The membrane is then subjected to two sequential medium stringency washes (i.e., 2×SSC, 0.1% SDS for 15 min at 45° C., followed by 2×SSC, 0.1% SDS for 15 min at 50° C.), followed by two sequential higher stringency washes (i.e., 0.2×SSC, 0.1% SDS for 12 min at 55° C. followed by 0.2×SSC and 0.1% SDS solution for 12 min at 65-68° C.

As noted above, certain embodiments relate to AARS polynucleotides that encode an AARS polypeptide. Among other uses, these embodiments may be utilized to recombinantly produce a desired AARS polypeptide or variant thereof, or to express the AARS polypeptide in a selected cell or subject. It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides may bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides that vary due to differences in codon usage are specifically contemplated by the present invention, for example polynucleotides that are optimized for human and/or primate codon selection.

Therefore, multiple polynucleotides can encode the AARS polypeptides of the invention. Moreover, the polynucleotide sequence can be manipulated for various reasons. Examples include but are not limited to the incorporation of preferred codons to enhance the expression of the polynucleotide in various organisms (see generally Nakamura et al., Nuc. Acid. Res. (2000) 28 (1): 292). In addition, silent mutations can be incorporated in order to introduce, or eliminate restriction sites, decrease the density of CpG dinucleotide motifs (see for example, Kameda et al., Biochem. Biophys. Res. Commun (2006) 349(4): 1269-1277) or reduce the ability of single stranded sequences to form stem-loop structures: (see, e.g., Zuker M., Nucl. Acid Res. (2003); 31(13): 3406-3415). In addition, mammalian expression can be further optimized by including a Kozak consensus sequence [i.e., (a/g)cc(a/g) ccATGg] at the start codon. Kozak consensus sequences useful for this purpose are known in the art (Mantyh et al. PNAS 92: 2662-2666 (1995); Mantyh et al. Prot. Exp. & Purif. 6,124

The polynucleotides of the present invention, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a polynucleotide fragment of almost any length may be employed; with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol.

Polynucleotides and fusions thereof may be prepared, manipulated and/or expressed using any of a variety of well established techniques known and available in the art. For example, polynucleotide sequences which encode polypeptides of the invention, or fusion proteins or functional equivalents thereof, may be used in recombinant DNA molecules to direct expression of an AARS polypeptide in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences that encode substantially the same or a

functionally equivalent amino acid sequence may be produced and these sequences may be used to clone and express a given polypeptide.

As will be understood by those of skill in the art, it may be advantageous in some instances to produce polypeptide-en- 5 coding nucleotide sequences possessing non-naturally occurring codons. For example, codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce a recombinant RNA transcript having desirable properties, such as a half-life 10 which is longer than that of a transcript generated from the naturally occurring sequence. Such polynucleotides are commonly referred to as "codon-optimized." Any of the polynucleotides described herein may be utilized in a codonoptimized form. In certain embodiments, a polynucleotide 15 can be codon optimized for use in specific bacteria such as E. coli or yeast such as S. cerevisiae (see, e.g., Burgess-Brown et al., Protein Expr Purif. 59:94-102, 2008; Ermolaeva M D (2001) Curr. Iss. Mol. Biol. 3 (4) 91-7; Welch et al., PLoS ONE 4(9): e7007 doi:10.1371/journal.pone.0007002).

Moreover, the polynucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter polypeptide encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, expression and/or 25 activity of the gene product.

According to another aspect of the invention, polynucleotides encoding polypeptides of the invention may be delivered to a subject in vivo, e.g., using gene therapy techniques. Gene therapy refers generally to the transfer of heterologous 30 nucleic acids to the certain cells, target cells, of a mammal, particularly a human, with a disorder or conditions for which such therapy is sought. The nucleic acid is introduced into the selected target cells in a manner such that the heterologous DNA is expressed and a therapeutic product encoded thereby 35 is produced

Various viral vectors that can be utilized for gene therapy as taught herein include adenovirus, herpes virus, vaccinia, adeno-associated virus (AAV), or, preferably, an RNA virus such as a retrovirus. Preferably, the retroviral vector is a 40 derivative of a murine or avian retrovirus, or is a lentiviral vector. The preferred retroviral vector is a lentiviral vector. Examples of retroviral vectors in which a single foreign gene can be inserted include, but are not limited to: Moloney murine leukemia virus (MoMuLV), Harvey murine sarcoma 45 virus (HaMuSV), murine mammary tumor virus (MuMTV), SIV, BIV, HIV and Rous Sarcoma Virus (RSV). A number of additional retroviral vectors can incorporate multiple genes. All of these vectors can transfer or incorporate a gene for a selectable marker so that transduced cells can be identified 50 and generated. By inserting a zinc finger derived-DNA binding polypeptide sequence of interest into the viral vector, along with another gene that encodes the ligand for a receptor on a specific target cell, for example, the vector may be made target specific. Retroviral vectors can be made target specific 55 by inserting, for example, a polynucleotide encoding a protein (dimer). Illustrative targeting may be accomplished by using an antibody to target the retroviral vector. Those of skill in the art will know of, or can readily ascertain without undue experimentation, specific polynucleotide sequences which 60 can be inserted into the retroviral genome to allow target specific delivery of the retroviral vector containing the zinc finger-nucleotide binding protein polynucleotide.

Since recombinant retroviruses are defective, they require assistance in order to produce infectious vector particles. This 65 assistance can be provided, for example, by using helper cell lines that contain plasmids encoding all of the structural

76

genes of the retrovirus under the control of regulatory sequences within the LTR. These plasmids are missing a nucleotide sequence which enables the packaging mechanism to recognize an RNA transcript for encapsulation. Helper cell lines which have deletions of the packaging signal include but are not limited to PSI.2, PA317 and PA12, for example. These cell lines produce empty virions, since no genome is packaged. If a retroviral vector is introduced into such cells in which the packaging signal is intact, but the structural genes are replaced by other genes of interest, the vector can be packaged and vector virion produced. The vector virions produced by this method can then be used to infect a tissue cell line, such as NIH 3T3 cells, to produce large quantities of chimeric retroviral virions.

"Non-viral" delivery techniques for gene therapy can also be used including, for example, DNA-ligand complexes, adenovirus-ligand-DNA complexes, direct injection of DNA, CaPO₄ precipitation, gene gun techniques, electroporation, liposomes, lipofection, and the like. Any of these methods are 20 widely available to one skilled in the art and would be suitable for use in the present invention. Other suitable methods are available to one skilled in the art, and it is to be understood that the present invention can be accomplished using any of the available methods of transfection. Lipofection can be accomplished by encapsulating an isolated DNA molecule within a liposomal particle and contacting the liposomal particle with the cell membrane of the target cell. Liposomes are self-assembling, colloidal particles in which a lipid bilayer, composed of amphiphilic molecules such as phosphatidyl serine or phosphatidyl choline, encapsulates a portion of the surrounding media such that the lipid bilayer surrounds a hydrophilic interior. Unilammellar or multilammellar liposomes can be constructed such that the interior contains a desired chemical, drug, or, as in the instant invention, an isolated DNA molecule.

In another aspect, polynucleotides encoding polypeptides of the invention may be used to express and delivery an AARS polypeptide via cell therapy. Accordingly in another aspect, the current invention includes a cell therapy for treating a disease or disorder, comprising administering a host cell expressing, or capable of expressing, an AARS polypeptide.

Cell therapy involves the administration of cells which have been selected, multiplied and pharmacologically treated or altered (i.e. genetically modified) outside of the body (Bordignon, C. et al, *Cell Therapy: Achievements and Perspectives* (1999), Haematologica, 84, pp. 1110-1149). Such host cells include for example, primary cells, including macrophages, and stem cells which have been genetically modified to express an AARS polypeptide. The aim of cell therapy is to replace, repair or enhance the biological function of damaged tissues or organs.

The use of transplanted cells has been investigated for the treatment of numerous endocrine disorders such as anemia and dwarfism, hematological disorders, kidney and liver failure, pituitary and CNS deficiencies and diabetes mellitus (Uludag et al., *Technology of Mammalian Cell Encapsulation* (2000), *Advanced Drug Delivery Reviews*, 42, pp. 29-64). Transplanted cells may function by releasing bioactive compounds such as an AARS polypeptide of the invention, to replace endogenous AARS polypeptides which are absent or produced in insufficient quantities in an effected system.

Embodiments of the present invention also include oligonucleotides, whether for detection, amplification, antisense therapies, or other purpose. For these and related purposes, the term "oligonucleotide" or "oligo" or "oligomer" is intended to encompass a singular "oligonucleotide" as well as plural "oligonucleotides," and refers to any polymer of two or

more of nucleotides, nucleosides, nucleobases or related compounds used as a reagent in the amplification methods of the present invention, as well as subsequent detection methods. The oligonucleotide may be DNA and/or RNA and/or analogs thereof.

The term oligonucleotide does not necessarily denote any particular function to the reagent, rather, it is used generically to cover all such reagents described herein. An oligonucleotide may serve various different functions, e.g., it may function as a primer if it is capable of hybridizing to a complementary strand and can further be extended in the presence of a nucleic acid polymerase, it may provide a promoter if it contains a sequence recognized by an RNA polymerase and allows for transcription, and it may function to prevent hybridization or impede primer extension if appropriately 15 situated and/or modified. An oligonucleotide may also function as a probe, or an antisense agent. An oligonucleotide can be virtually any length, limited only by its specific function, e.g., in an amplification reaction, in detecting an amplification product of the amplification reaction, or in an antisense or 20 RNA interference application. Any of the oligonucleotides described herein can be used as a primer, a probe, an antisense oligomer, or an RNA interference agent.

The term "primer" as used herein refers to a singlestranded oligonucleotide capable of acting as a point of ini- 25 tiation for template-directed DNA synthesis under suitable conditions defined, for example, by buffer and temperature, in the presence of four different nucleoside triphosphates and an agent for polymerization, such as a DNA or RNA polymerase or reverse transcriptase. The length of the primer, in any given 30 case, depends on, for example, the intended use of the primer, and generally ranges from about 15 to 30 nucleotides, although shorter and longer primers may be used. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template. 35 A primer need not reflect the exact sequence of the template but must be sufficiently complementary to hybridize with such template. The primer site is the area of the template to which a primer hybridizes. The primer pair is a set of primers including a 5' upstream primer that hybridizes with the 5' end 40 of the sequence to be amplified and a 3' downstream primer that hybridizes with the complement of the 3' end of the sequence to be amplified.

The term "probe" as used herein includes a surface-immobilized or soluble but capable of being immobilized molecule 45 that can be recognized by a particular target. See, e.g., U.S. Pat. No. 6,582,908 for an example of arrays having all possible combinations of probes with 10, 12, and more bases. Probes and primers as used herein typically comprise at least 10-15 contiguous nucleotides of a known sequence. In order 50 to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 nucleotides of an AARS reference sequence or its complement. Probes and primers may be considerably longer than these 55 examples, and it is understood that any length supported by the knowledge in the art and the specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al. 60 (1989) Molecular Cloning: A Laboratory Manual, 2.sup.nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview N.Y.; Ausubel, F. M. et al. (1987) Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York N.Y.; Innis, M. et al. (1990) PCR Protocols. A Guide to 65 Methods and Applications, Academic Press, San Diego Calif. PCR primer pairs can be derived from a known sequence, for

example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge Mass.).

78

Oligonucleotides for use as primers or probes may be selected using software known in the art. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas Tex.) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope.

The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge Mass.) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described herein.

In certain embodiments, oligonucleotides can be prepared by stepwise solid-phase synthesis, employing methods detailed in the references cited above, and below with respect to the synthesis of oligonucleotides having a mixture or uncharged and cationic backbone linkages. In some cases, it may be desirable to add additional chemical moieties to the oligonucleotide, e.g., to enhance pharmacokinetics or to facilitate capture or detection of the compound. Such a moiety may be covalently attached, typically to a terminus of the oligomer, according to standard synthetic methods. For example, addition of a polyethyleneglycol moiety or other hydrophilic polymer, e.g., one having 10-100 monomeric subunits, may be useful in enhancing solubility. One or more charged groups, e.g., anionic charged groups such as an organic acid, may enhance cell uptake.

A variety of detectable molecules may be used to render an oligonucleotide, or protein detectable, such as a radioisotopes, fluorochromes, dyes, enzymes, nanoparticles, chemiluminescent markers, biotin, or other monomer known in the art that can be detected directly (e.g., by light emission) or indirectly (e.g., by binding of a fluorescently-labeled antibody).

Radioisotopes provide examples of detectable molecules that can be utilized in certain aspects of the present invention. Several radioisotopes can be used as detectable molecules for labeling nucleotides or proteins, including, for example, ³²P, ³³P, ³⁵S, ³H, and ¹²⁵I. These radioisotopes have different half-lives, types of decay, and levels of energy which can be

tailored to match the needs of a particular protocol. For example, 3H is a low energy emitter which results in low background levels, however this low energy also results in long time periods for autoradiography. Radioactively labeled ribonucleotides, deoxyribonucleotides and amino acids are 5 commercially available. Nucleotides are available that are radioactively labeled at the first, or α , phosphate group, or the third, or γ , phosphate group. For example, both $[\alpha-^{32}P]$ dATP and $[\gamma-^{32}P]$ dATP are commercially available. In addition, different specific activities for radioactively labeled nucleotides are also available commercially and can be tailored for different protocols.

Other examples of detectable molecules that can be utilized to detect an oligonucleotide include fluorophores. Several fluorophores can be used for labeling nucleotides including, for example, fluorescein, tetramethylrhodamine, Texas Red, and a number of others (e.g., Haugland, *Handbook of Fluorescent Probes-9th Ed.*, 2002, Molec. Probes, Inc., Eugene Oreg.; Haugland, *The Handbook: A Guide to Fluorescent Probes and Labeling Technologies-10th Ed.*, 2005, 20 Invitrogen, Carlsbad, Calif.).

As one example, oligonucleotides may be fluorescently labeled during chemical synthesis, since incorporation of amines or thiols during nucleotide synthesis permit addition of fluorophores. Fluorescently labeled nucleotides are commercially available. For example, uridine and deoxyuridine triphosphates are available that are conjugated to ten different fluorophores that cover the spectrum. Fluorescent dyes that can be bound directly to nucleotides can also be utilized as detectable molecules. For example, FAM, JOE, TAMRA, and 30 ROX are amine reactive fluorescent dyes that have been attached to nucleotides and are used in automated DNA sequencing. These fluorescently labeled nucleotides, for example, ROX-ddATP, ROX-ddCTP, ROX-ddGTP and ROX-ddUTP, are commercially available.

Non-radioactive and non-fluorescent detectable molecules are also available. As noted above, biotin can be attached directly to nucleotides and detected by specific and high affinity binding to avidin or streptavidin which has been chemically coupled to an enzyme catalyzing a colorimetric 40 reaction (such as phosphatase, luciferase, or peroxidase). Digoxigenin labeled nucleotides can also similarly be used for non-isotopic detection of nucleic acids. Biotinylated and digoxigenin-labeled nucleotides are commercially available.

Very small particles, termed nanoparticles, also can be 45 used to label oligonucleotide probes. These particles range from 1-1000 nm in size and include diverse chemical structures such as gold and silver particles and quantum dots. When irradiated with angled incident white light, silver or gold nanoparticles ranging from 40-120 nm will scatter 50 monochromatic light with high intensity. The wavelength of the scattered light is dependent on the size of the particle. Four to five different particles in close proximity will each scatter monochromatic light, which when superimposed will give a specific, unique color. The particles are being manufactured 55 by companies such as Genicon Sciences (Carlsbad, Calif.). Derivatized silver or gold particles can be attached to a broad array of molecules including, proteins, antibodies, small molecules, receptor ligands, and nucleic acids. For example, the surface of the particle can be chemically derivatized to allow 60 attachment to a nucleotide.

Other types of nanoparticles that can be used for detection of a detectable molecule include quantum dots. Quantum dots are fluorescing crystals 1-5 nm in diameter that are excitable by light over a large range of wavelengths. Upon excitation by light having an appropriate wavelength, these crystals emit light, such as monochromatic light, with a wavelength dependent.

dent on their chemical composition and size. Quantum dots such as CdSe, ZnSe, InP, or InAs possess unique optical properties; these and similar quantum dots are available from a number of commercial sources (e.g., NN-Labs, Fayetteville, Ark.; Ocean Nanotech, Fayetteville, Ark.; Nanoco Technologies, Manchester, UK; Sigma-Aldrich, St. Louis, Mo.).

80

Many dozens of classes of particles can be created according to the number of size classes of the quantum dot crystals. The size classes of the crystals are created either 1) by tight control of crystal formation parameters to create each desired size class of particle, or 2) by creation of batches of crystals under loosely controlled crystal formation parameters, followed by sorting according to desired size and/or emission wavelengths. Two examples of references in which quantum dots are embedded within intrinsic silicon epitaxial layers of semiconductor light emitting/detecting devices are U.S. Pat. Nos. 5,293,050 and 5,354,707 to Chapple Sokol, et al.

In certain embodiments, oligonucleotide primers or probes may be labeled with one or more light-emitting or otherwise detectable dyes. The light emitted by the dyes can be visible light or invisible light, such as ultraviolet or infrared light. In exemplary embodiments, the dye may be a fluorescence resonance energy transfer (FRET) dye; a xanthene dye, such as fluorescein and rhodamine; a dye that has an amino group in the alpha or beta position (such as a naphthylamine dye, 1-dimethylaminonaphthyl-5-sulfonate, 1-anilino-8-naphthalende sulfonate and 2-p-touidinyl-6-naphthalene sulfonate); a dye that has 3-phenyl-7-isocyanatocoumarin; an acridine, such as 9-isothiocyanatoacridine and acridine orange; a pyrene, a bensoxadiazole and a stilbene; a dye that has 3-(εcarboxypentyl)-3'-ethyl-5,5'-dimethyloxacarbocyanine (CYA); 6-carboxy fluorescein (FAM); 5&6-carboxyrhodamine-110 (R110); 6-carboxyrhodamine-6G (R6G); N,N,N',N'-tetramethyl-6-carboxyrhodamine (TAMRA): 6-carboxy-X-rhodamine (ROX); 6-carboxy-4',5'-dichloro-2', 7'-dimethoxyfluorescein (JOE); ALEXA FLUORTM; Cy2; Texas Red and Rhodamine Red; 6-carboxy-2',4,7,7'-tetrachlorofluorescein (TET); 6-carboxy-2',4,4',5',7,7'-hexachlorofluorescein (HEX); 5-carboxy-2',4',5 ',7'-tetrachlorofluorescein (ZOE); NAN; NED; Cy3; Cy3.5; CyS; Cy5.5; Cy7; and Cy7.5; IR800CW, ICG, Alexa Fluor 350; Alexa Fluor 488; Alexa Fluor 532; Alexa Fluor 546; Alexa Fluor 568; Alexa Fluor 594; Alexa Fluor 647; Alexa Fluor 680, or Alexa Fluor 750.

The AARS polynucleotides and oligonucleotides of the present invention can be used in any of the therapeutic, diagnostic, research, or drug discovery compositions and methods described herein.

V. Antibodies

According to another aspect, the present invention further provides antibodies that exhibit binding specificity for an AARS polypeptide, or its native cellular binding partner (i.e. cellular receptor, lipid, carbohydrate, protein, or nucleic acid binding partner), or complex thereof, and methods of using the same. The term antibody includes the various variations of the same, such as FABs, human antibodies, modified human antibodies, single chains, nonhuman antibodies, and other derivatives of the immunoglobulin fold that underlie immune system ligands for antigens, as described herein and known in the art. Antibodies can be used in any of the therapeutic, diagnostic, drug discovery, or protein expression/purification methods and compositions provided herein.

Certain antibodies of the present invention differ from certain previously made antibodies because they can distin-

guish between the AARS protein fragments of Table(s) 1-3, or Table(s) 4-6, or Table(s) 7-9 and their corresponding fulllength AARS, typically by binding with greater affinity to the AARS protein fragments than to the corresponding fulllength AARS. Generally, such antibodies may bind to unique 5 sequences or structures generated or revealed by splice variations, proteolysis, or other cellular processing that generates an AARS protein fragment of the invention (e.g., post translational processing, including but not limited to phosphorylation and other modifications that change protein structure). 10 In some aspects the antibodies may bind to sequences around a unique splice junction (for example to one or more regions of at least 5 contiguous amino acids selected from the splice junction sequences listed in Tables 2B, 5B, or 8B, or alternatively to any amino acid sequence C-terminal of this splice 15 site, for example as listed in Tables 2B, 5B, or 8B. For example, such antibodies may have binding specificity to one or more non-solvent exposed faces that are exposed in the AARS protein fragment but not in the full-length AARS, or sequences that are not found or are otherwise inaccessible in 20 the full-length AARS. Antibodies may also bind to unique three-dimensional structures that result from differences in folding between the AARS protein fragment and the fulllength AARS. Such differences in folding may be localized (e.g., to a specific domain or region) or globalized. As one 25 example, folding of AARS protein fragments may generate unique continuous or discontinuous epitopes that are not found in the corresponding or parent AARS. Examples also include antibodies that specifically bind to N- or C-termini generated by splice variations, proteolysis, or other cellular 30 processing; such termini may be unique compared to the full-length AARS or may not be exposed for antibody binding in the full-length versions due to their termini being completely or partially buried in the overall structure of the larger AARS parent molecule.

In some embodiments, antibodies provided herein do not form aggregates, have a desired solubility, and/or have an immunogenicity profile that is suitable for use in humans, as described herein and known in the art. Also included are antibodies that are suitable for production work, such as to 40 purify the AARS protein fragments described herein. Preferably, active antibodies can be concentrated to at least about 10 mg/ml and optional formulated for biotherapeutic uses.

In certain embodiments, antibodies are effective for modulating one or more of the non-canonical activities mediated by an AARS polypeptide of the invention. In certain embodiments, for example, the antibody is one that binds to an AARS polypeptide and/or its binding partner, inhibits their ability to interact with each other, and/or antagonizes the non-canonical activity of the AARS polypeptide. In certain embodiments, for example, the antibody binds to the cellular binding partner of an AARS polypeptide, and mimics the AARS polypeptide activity, such as by increasing or agonizing the non-canonical activity mediated by the AARS polypeptide. Accordingly, antibodies may be used to diagnose, treat, or prevent diseases, disorders or other conditions that are mediated by an AARS polypeptide of the invention, such as by antagonizing or agonizing its activity partially or fully.

An antibody, or antigen-binding fragment thereof, is said to "specifically bind," "immunologically bind," and/or is 60 "immunologically reactive" to a polypeptide of the invention if it reacts at a detectable level (within, for example, an ELISA assay) with the polypeptide, and does not react detectably in a statistically significant manner with unrelated polypeptides under similar conditions. In certain instances, a binding agent 65 does not significantly interact with a full-length version of the AARS polypeptide.

82

Immunological binding, as used in this context, generally refers to the non-covalent interactions of the type which occur between an immunoglobulin molecule and an antigen for which the immunoglobulin is specific. The strength, or affinity of binding such as immunological binding interactions can be expressed in terms of the dissociation constant (K_d) of the interaction, wherein a smaller K_d represents a greater affinity Immunological binding properties of selected polypeptides can be quantified using methods well known in the art. See, e.g., Davies et al. (1990) Annual Rev. Biochem. 59:439-473. In certain illustrative embodiments, an antibody has an affinity for an AARS protein fragment of at least about 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, or 50 nM. In certain embodiments, the affinity of the antibody for an AARS protein fragment is stronger than its affinity for a corresponding full-length AARS polypeptide, typically by about 1.5×, 2×, 2.5×, 3×, $3.5\times$, $4\times$, $4.5\times$, $5\times$, $6\times$, $7\times$, $8\times$, $9\times$, $10\times$, $15\times$, $20\times$, $25\times$, $30\times$, 40x, 50x, 60x, 70x, 80x, 90x, 100x, 200x, 300x, 400x, 500x, 600×, 700×, 800×, 900×, 1000× or more (including all integers in between). In certain embodiments, an antibody as an affinity for a corresponding full-length AARS protein of at least about 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 µM. In certain embodiments, an antibody binds weakly or substantially undetectably to a full-length AARS protein.

An "antigen-binding site," or "binding portion" of an antibody, refers to the part of the immunoglobulin molecule that participates in antigen binding. The antigen binding site is formed by amino acid residues of the N-terminal variable ("V") regions of the heavy ("H") and light ("L") chains. Three highly divergent stretches within the V regions of the heavy and light chains are referred to as "hypervariable regions" 35 which are interposed between more conserved flanking stretches known as "framework regions," or "FRs". Thus the term "FR" refers to amino acid sequences which are naturally found between and adjacent to hypervariable regions in immunoglobulins. In an antibody molecule, the three hypervariable regions of a light chain and the three hypervariable regions of a heavy chain are disposed relative to each other in three dimensional space to form an antigen-binding surface. The antigen-binding surface is complementary to the threedimensional surface of a bound antigen, and the three hypervariable regions of each of the heavy and light chains are referred to as "complementarity-determining regions," or "CDRs."

Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. Monoclonal antibodies specific for a polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976, and improvements thereto. Also included are methods that utilize transgenic animals such as mice to express human antibodies. See, e.g., Neuberger et al., Nature Biotechnology 14:826, 1996; Lonberg et al., Handbook of Experimental Pharmacology 113:49-101, 1994; and Lonberg et al., Internal Review of Immunology 13:65-93, 1995. Particular examples include the VELOCIMMUNE® platform by REGERNEREX® (see, e.g., U.S. Pat. No. 6,596, 541). Antibodies can also be generated or identified by the use of phage display or yeast display libraries (see, e.g., U.S. Pat. No. 7,244,592; Chao et al., Nature Protocols. 1:755-768, 2006). Non-limiting examples of available libraries include cloned or synthetic libraries, such as the Human Combinatorial Antibody Library (HuCAL), in which the structural diver-

sity of the human antibody repertoire is represented by seven heavy chain and seven light chain variable region genes. The combination of these genes gives rise to 49 frameworks in the master library. By superimposing highly variable genetic cassettes (CDRs=complementarity determining regions) on 5 these frameworks, the vast human antibody repertoire can be reproduced. Also included are human libraries designed with human-donor-sourced fragments encoding a light-chain variable region, a heavy-chain CDR-3, synthetic DNA encoding diversity in heavy-chain CDR-1, and synthetic DNA encoding diversity in heavy-chain CDR-2. Other libraries suitable for use will be apparent to persons skilled in the art. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

An "Fv" fragment can be produced by preferential pro- 15 teolytic cleavage of an IgM, and on rare occasions IgG or IgA immunoglobulin molecule. Fv fragments are, however, more commonly derived using recombinant techniques known in the art. The Fv fragment includes a non-covalent $V_H::V_L$ heterodimer including an antigen-binding site which retains 20 much of the antigen recognition and binding capabilities of the native antibody molecule. See, e.g., Inbar et al. (1972) Proc. Nat. Acad. Sci. USA 69:2659-2662; Hochman et al. (1976) Biochem 15:2706-2710; and Ehrlich et al. (1980) Biochem 19:4091-4096.

A single chain Fv ("sFv") polypeptide is a covalently linked $V_H::V_L$ heterodimer which is expressed from a gene fusion including V_H - and V_L -encoding genes linked by a peptide-encoding linker. Huston et al. (1988) PNAS USA. 85(16):5879-5883. A number of methods have been 30 described to discern chemical structures for converting the naturally aggregated—but chemically separated—light and heavy polypeptide chains from an antibody V region into an sFv molecule which will fold into a three dimensional structure substantially similar to the structure of an antigen-binding site. See, e.g., U.S. Pat. Nos. 5,091,513 and 5,132,405, to Huston et al.; and U.S. Pat. No. 4,946,778, to Ladner et al.

Each of the above-described molecules includes a heavy chain and a light chain CDR set, respectively interposed between a heavy chain and a light chain FR set which provide 40 of the therapeutic, diagnostic, drug discovery, protein purifisupport to the CDRS and define the spatial relationship of the CDRs relative to each other. As used herein, the term "CDR set" refers to the three hypervariable regions of a heavy or light chain V region. Proceeding from the N-terminus of a heavy or light chain, these regions are denoted as "CDR1," "CDR2," and "CDR3" respectively. An antigen-binding site, therefore, includes six CDRs, comprising the CDR set from each of a heavy and a light chain V region. A polypeptide comprising a single CDR, (e.g., a CDR1, CDR2 or CDR3) is referred to herein as a "molecular recognition unit." Crystal- 50 lographic analysis of a number of antigen-antibody complexes has demonstrated that the amino acid residues of CDRs form extensive contact with bound antigen, wherein the most extensive antigen contact is with the heavy chain CDR3. Thus, the molecular recognition units are primarily 55 responsible for the specificity of an antigen-binding site.

As used herein, the term "FR set" refers to the four flanking amino acid sequences which frame the CDRs of a CDR set of a heavy or light chain V region. Some FR residues may contact bound antigen; however, FRs are primarily respon- 60 sible for folding the V region into the antigen-binding site, particularly the FR residues directly adjacent to the CDRS. Within FRs, certain amino residues and certain structural features are very highly conserved. In this regard, all V region sequences contain an internal disulfide loop of around 90 65 amino acid residues. When the V regions fold into a bindingsite, the CDRs are displayed as projecting loop motifs which

form an antigen-binding surface. It is generally recognized that there are conserved structural regions of FRs which influence the folded shape of the CDR loops into certain "canonical" structures—regardless of the precise CDR amino acid sequence. Further, certain FR residues are known to participate in non-covalent interdomain contacts which stabilize the interaction of the antibody heavy and light chains.

84

Certain embodiments include single domain antibody (sd-Abs or "nanobodies"), which refer to an antibody fragment consisting of a single monomeric variable antibody domain (see, e.g., U.S. Pat. Nos. 5,840,526; 5,874,541; 6,005,079, 6,765,087, 5,800,988; 5,874,541; and 6,015,695). Such sdABs typically have a molecular weight of about 12-15 kDa. In certain aspects, sdABs and other antibody molecules can be derived or isolated from the unique heavy-chain antibodies of immunized camels and llamas, often referred to as camelids. See, e.g., Conrath et al., JBC. 276:7346-7350, 2001.

A number of "humanized" antibody molecules comprising an antigen-binding site derived from a non-human immunoglobulin have been described, including chimeric antibodies having rodent V regions and their associated CDRs fused to human constant domains (Winter et al. (1991) Nature 349: 293-299; Lobuglio et al. (1989) Proc. Nat. Acad. Sci. USA 86:4220-4224; Shaw et al. (1987) J Immunol. 138:4534-4538; and Brown et al. (1987) Cancer Res. 47:3577-3583), rodent CDRs grafted into a human supporting FR prior to fusion with an appropriate human antibody constant domain (Riechmann et al. (1988) Nature 332:323-327; Verhoeyen et al. (1988) Science 239:1534-1536; and Jones et al. (1986) Nature 321:522-525), and rodent CDRs supported by recombinantly veneered rodent FRs (European Patent Publication No. 519,596, published Dec. 23, 1992). These "humanized" molecules are designed to minimize unwanted immunological response toward rodent antihuman antibody molecules which limits the duration and effectiveness of therapeutic applications of those moieties in human recipients. See, e.g., U.S. Pat. Nos. 5,530,101; 5,585,089; 5,693,762; 6,180,370; and 7,022,500.

The antibodies of the present invention can be used in any cation, and analytical methods and compositions described

VI. Antibody Alternatives and Other Binding Agents

According to another aspect, the present invention further provides antibody alternatives or other binding agents, such as soluble receptors, adnectins, peptides, peptide mimetics, small molecules, aptamers, etc., that exhibit binding specificity for an AARS polypeptide or its cellular binding partner as disclosed herein, or to a portion, variant or derivative thereof, and compositions and methods of using same. Binding agents can be used in any of the therapeutic, diagnostic, drug discovery, or protein expression/purification, and analytical methods and compositions described herein. Biologic-based binding agents such as adnectins, soluble receptors, avimers, and trinectins are particularly useful.

In certain embodiments, such binding agents are effective for modulating one or more of the non-canonical activities mediated by an AARS polypeptide of the invention. In some embodiments, for example, the binding agent is one that binds to an AARS polypeptide and/or its binding partner, inhibits their ability to interact with each other, and/or antagonizes the non-canonical activity of the AARS polypeptide. In certain embodiments, for example, the binding agent binds to the cellular binding partner of an AARS polypeptide, and mimics the AARS polypeptide activity, such as by increasing or ago-

nizing the non-canonical activity mediated by the AARS polypeptide. Accordingly, such binding agents may be used to diagnose, treat, or prevent diseases, disorders or other conditions that are mediated by an AARS polypeptide of the invention, such as by antagonizing or agonizing its activity 5 partially or fully.

A binding agent is said to "specifically bind" to an AARS polypeptide of the invention, or its cellular binding partner, if it reacts at a detectable level (within, for example, an ELISA assay) with the polypeptide or its cellular binding partner, and does not react detectably in a statistically significant manner with unrelated polypeptides under similar conditions. In certain instances, a binding agent does not significantly interact with a full-length version of the AARS polypeptide. In certain illustrative embodiments, a binding agent has an affinity for 15 an AARS protein fragment or its cellular binding partner of at least about 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, or 50 nM. In certain embodiments, the affinity of the binding agent for an AARS 20 protein fragment is stronger than its affinity for a corresponding full-length AARS polypeptide, typically by about 1.5×, $2 \times$, $2.5 \times$, $3 \times$, $3.5 \times$, $4 \times$, $4.5 \times$, $5 \times$, $6 \times$, $7 \times$, $8 \times$, $9 \times$, $10 \times$, $15 \times$, $20 \times$, 25×, 30×, 40×, 50×, 60×, 70×, 80×, 90×, 100×, 200×, 300×, 400x, 500x, 600x, 700x, 800x, 900x, 1000x or more (includ- 25 ing all integers in between). In certain embodiments, a binding agent has an affinity for a corresponding full-length AARS protein of at least about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 μ M.

As noted above, "peptides" are included as binding agents. 30 The term peptide typically refers to a polymer of amino acid residues and to variants and synthetic analogues of the same. In certain embodiments, the term "peptide" refers to relatively short polypeptides, including peptides that consist of about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 35 20, 25, 30, 35, 40, 45, or 50 amino acids, including all integers and ranges (e.g., 5-10, 8-12, 10-15) in between, and interact with an AARS polypeptide, its cellular binding partner, or both. Peptides can be composed of naturally-occurring amino acids and/or non-naturally occurring amino acids, as 40 described herein.

In addition to peptides consisting only of naturally-occurring amino acids, peptidomimetics or peptide analogs are also provided. Peptide analogs are commonly used in the pharmaceutical industry as non-peptide drugs with properties analo- 45 gous to those of the template peptide. These types of nonpeptide compound are termed "peptide mimetics" or 'peptidomimetics" (Luthman, et al., A Textbook of Drug Design and Development, 14:386-406, 2nd Ed., Harwood Academic Publishers (1996); Joachim Grante, Angew. Chem. 50 Int. Ed. Engl., 33:1699-1720 (1994); Fauchere, J., Adv. Drug Res., 15:29 (1986); Veber and Freidinger TINS, p. 392 (1985); and Evans, et al., J. Med. Chem. 30:229 (1987)). A peptidomimetic is a molecule that mimics the biological activity of a peptide but is no longer peptidic in chemical 55 nature. Peptidomimetic compounds are known in the art and are described, for example, in U.S. Pat. No. 6,245,886.

The present invention also includes peptoids. Peptoid derivatives of peptides represent another form of modified peptides that retain the important structural determinants for 60 biological activity, yet eliminate the peptide bonds, thereby conferring resistance to proteolysis (Simon, et al., *PNAS USA*. 89:9367-9371, 1992). Peptoids are oligomers of N-substituted glycines. A number of N-alkyl groups have been described, each corresponding to the side chain of a natural 65 amino acid. The peptidomimetics of the present invention include compounds in which at least one amino acid, a few

amino acids or all amino acid residues are replaced by the corresponding N-substituted glycines. Peptoid libraries are described, for example, in U.S. Pat. No. 5,811,387.

86

A binding agent may also include one or more small molecules. A "small molecule" refers to an organic compound that is of synthetic or biological origin (biomolecule), but is typically not a polymer. Organic compounds refer to a large class of chemical compounds whose molecules contain carbon, typically excluding those that contain only carbonates, simple oxides of carbon, or cyanides. A "biomolecule" refers generally to an organic molecule that is produced by a living organism, including large polymeric molecules (biopolymers) such as peptides, polysaccharides, and nucleic acids as well, and small molecules such as primary secondary metabolites, lipids, phospholipids, glycolipids, sterols, glycerolipids, vitamins, and hormones. A "polymer" refers generally to a large molecule or macromolecule composed of repeating structural units, which are typically connected by covalent chemical bond.

In certain embodiments, a small molecule has a molecular weight of less than 1000-2000 Daltons, typically between about 300 and 700 Daltons, and including about 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 500, 650, 600, 750, 700, 850, 800, 950, 1000 or 2000 Daltons. Small molecule libraries are described elsewhere herein.

Aptamers are also included as binding agents (see, e.g., Ellington et al., *Nature*. 346, 818-22, 1990; and Tuerk et al., *Science*. 249, 505-10, 1990). Examples of aptamers included nucleic acid aptamers (e.g., DNA aptamers, RNA aptamers) and peptide aptamers. Nucleic acid aptamers refer generally to nucleic acid species that have been engineered through repeated rounds of in vitro selection or equivalent method, such as SELEX (systematic evolution of ligands by exponential enrichment), to bind to various molecular targets such as small molecules, proteins, nucleic acids, and even cells, tissues and organisms. See, e.g., U.S. Pat. Nos. 6,376,190; and 6,387,620. Hence, included are nucleic acid aptamers that bind to the AARS polypeptides described herein and/or their cellular binding partners.

Peptide aptamers typically include a variable peptide loop attached at both ends to a protein scaffold, a double structural constraint that typically increases the binding affinity of the peptide aptamer to levels comparable to that of an antibody's (e.g., in the nanomolar range). In certain embodiments, the variable loop length may be composed of about 10-20 amino acids (including all integers in between), and the scaffold may include any protein that has good solubility and compacity properties. Certain exemplary embodiments may utilize the bacterial protein Thioredoxin-A as a scaffold protein, the variable loop being inserted within the reducing active site (-Cys-Gly-Pro-Cys-loop in the wild protein), with the two cysteines lateral chains being able to form a disulfide bridge. Methods for identifying peptide aptamers are described, for example, in U.S. Application No. 2003/0108532. Hence, included are peptide aptamers that bind to the AARS polypeptides described herein and/or their cellular binding partners. Peptide aptamer selection can be performed using different systems known in the art, including the yeast twohybrid system.

Also included are ADNECTINSTM, AVIMERSTM, anaphones and anticalins that specifically bind to an AARS protein fragment of the invention. ADNECTINSTM refer to a class of targeted biologics derived from human fibronectin, an abundant extracellular protein that naturally binds to other proteins. See, e.g., U.S. Application Nos. 2007/0082365; 2008/0139791; and 2008/0220049. ADNECTINSTM typically consists of a natural fibronectin backbone, as well as the

multiple targeting domains of a specific portion of human fibronectin. The targeting domains can be engineered to enable an ADNECTINTM to specifically recognize a therapeutic target of interest, such as an AARS protein fragment of the invention.

AVIMERS™ refer to multimeric binding proteins or peptides engineered using in vitro exon shuffling and phage display. Multiple binding domains are linked, resulting in greater affinity and specificity compared to single epitope immunoglobulin domains. See, e.g., Silverman et al., *Nature* 10 *Biotechnology.* 23:1556-1561, 2005; U.S. Pat. No. 7,166, 697; and U.S. Application Nos. 2004/0175756, 2005/0048512, 2005/0053973, 2005/0089932 and 2005/0221384.

Also included are designed ankyrin repeat proteins (DARPins), which include a class of non-immunoglobulin 15 proteins that can offer advantages over antibodies for target binding in drug discovery and drug development. Among other uses, DARPins are ideally suited for in vivo imaging or delivery of toxins or other therapeutic payloads because of their favorable molecular properties, including small size and 20 high stability. The low-cost production in bacteria and the rapid generation of many target-specific DARPins make the DARPin approach useful for drug discovery. Additionally, DARPins can be easily generated in multispecific formats, offering the potential to target an effector DARPin to a spe-25 cific organ or to target multiple receptors with one molecule composed of several DARPins. See, e.g., Stumpp et al., Curr Opin Drug Discov Devel. 10:153-159, 2007; U.S. Application No. 2009/0082274; and PCT/EP2001/10454.

Certain embodiments include "monobodies," which typically utilize the 10th fibronectin type III domain of human fibronectin (FNfn10) as a scaffold to display multiple surface loops for target binding. FNfn10 is a small (94 residues) protein with a β -sandwich structure similar to the immunoglobulin fold. It is highly stable without disulfide bonds or metal ions, and it can be expressed in the correctly folded form at a high level in bacteria. The FNfn10 scaffold is compatible with virtually any display technologies. See, e.g., Batori et al., *Protein Eng.* 15:1015-20, 2002; and Wojcik et al., *Nat Struct Mol Biol.*, 2010; and U.S. Pat. No. 6,673,901.

Anticalins refer to a class of antibody mimetics, which are typically synthesized from human lipocalins, a family of binding proteins with a hypervariable loop region supported by a structurally rigid framework. See, e.g., U.S. Application No. 2006/0058510. Anticalins typically have a size of about 45 20 kDa. Anticalins can be characterized by a barrel structure formed by eight antiparallel β -strands (a stable β -barrel scaffold) that are pairwise connected by four peptide loops and an attached α -helix. In certain aspects, conformational deviations to achieve specific binding are made in the hypervariable loop region(s). See, e.g., Skerra, *FEBS J.* 275:2677-83, 2008, herein incorporated by reference.

VII. Bioassays and Analytical Assays for Drug Release Assays and Product Specifications, Diagnostics, and Reagents

Also included are bioassays that relate to the AARS protein fragments and related agents as therapeutic and diagnostic reagents. Examples include bioassays and analytical assays 60 that measure purity, biological activity, affinity, solubility, pH, endotoxin levels, among others, many of which are described herein. Also included are assays that establish dose response curves and/or provide one or more bases for comparison between different batches of agents. Batch comparisons can be based on any one or more of chemical characterization, biological characterization, and clinical

88

characterization. For protein agents, also included are methods of evaluating the potency, stability, pharmacokinetics, and immunogenicity of a selected agent. Among other uses, these and other methods can be used for lot releasing testing of biologic or chemical agents, including the AARS protein fragments, antibodies, binding agents, polynucleotides such as antisense agents and vectors, and others described herein.

Certain embodiments include the use of bioaffinity assays. Such assays can be used to assess the binding affinity, for example, between an AARS protein fragment and a cellular binding partner, or between an AARS protein fragment and an antibody. Binding affinity can also be measured between an AARS protein fragment and an alternate binding agent such as a candidate or lead test compound (e.g., small molecule modulator of an AARS), or between an AARS cellular binding partner and a candidate or lead test compound. Certain exemplary binding affinity assays may utilize ELISA assays, as described herein and known in the art. Certain assays utilize high-performance receptor binding chromatography (see, e.g., Roswall et al., Biologicals, 24:25-39, 1996). Other exemplary binding affinity assays may utilize surface plasmon resonance (SPR)-based technologies. Examples include BIACore technologies, certain of which integrate SPR technology with a microfluidics system to monitor molecular interactions in real time at concentrations ranging from pM to mM. Also included are KINEXATM assays, which provide accurate measurements of binding specificity, binding affinity, and binding kinetics/rate constants.

Certain embodiments relate to immunoassays for evaluating or optimizing the immunogenicity of protein agents. Examples include ex vivo human cellular assays and in vitro immuno-enzymatic assays to provide useful information on the immunogenic potential of a therapeutic protein. Ex vivo cell-response assays can be used, for example, to reproduce the cellular co-operation between antigen-presenting cells (APCs) and T-cells, and thereby measure T-cells activation after contact with a protein of interest. Certain in vitro enzymatic assays may utilize a collection of recombinant HLA-DR molecules that cover a significant portion of a relevant human population, and may include automated immuno-enzymatic assays for testing the binding of peptides (stemming from the fragmentation of the therapeutic protein) with the HLA-DR molecules. Also included are methods of reducing the immunogenicity of a selected protein, such as by using these and related methods to identify and then remove or alter one or more T-cell epitopes from a protein agent.

Also included are biological release assays (e.g., cellbased assays) for measuring parameters such as specific biological activities, including non-canonical biological activities, and cytotoxicity. Certain specific biological assays include, for example, cell-based assays that utilize a cellular binding partner (e.g., cell-surface receptor) of a selected AARS protein fragment, which is functionally coupled to a readout, such as a fluorescent or luminescent indicator of a 55 non-canonical biological activity, as described herein. For instance, specific embodiments include a cell that comprises a cell-surface receptor or an extracellular portion thereof that binds to an AARS protein fragment, wherein the cell comprises a detector or readout. Also included are in vivo biological assays to characterize the pharmacokinetics of an agent, such as an AARS polypeptide or antibody, typically utilizing engineered mice or other mammal (see, e.g., Lee et al., The Journal of Pharmacology. 281:1431-1439, 1997). Examples of cytotoxicity-based biological assays include release assays (e.g., chromium or europium release assays to measure apoptosis; see, e.g., von Zons et al., Clin Diagn Lab Immunol. 4:202-207, 1997), among others, which can assess the cyto-

toxicity of AARS protein fragments, whether for establishing dose response curves, batch testing, or other properties related to approval by various regulatory agencies, such as the Food and Drug Administration (FDA).

Such assays can be used, for example, to develop a dose 5 response curve for a selected AARS protein fragment or other agent, and/or to compare the dose response curve of different batches of proteins or other agents. A dose-response curve is an X-Y graph that relates the magnitude of a stressor to the response of a receptor; the response may be a physiological or biochemical response, such as a non-canonical biological activity in a cell in vitro or in a cell or tissue in vivo, a therapeutically effective amount as measured in vivo (e.g., as measured by EC₅₀), or death, whether measured in vitro or in vivo (e.g., cell death, organismal death). Death is usually indicated as an LD_{50} , a statistically-derived dose that is lethal to 50% of a modeled population, though it can be indicated by LC_{01} (lethal dose for 1% of the animal test population), LC_{100} (lethal dose for 100% of the animal test population), or LC_{LO} (lowest dose causing lethality). Almost any desired effect or 20 endpoint can be characterized in this manner.

The measured dose of a response curve is typically plotted on the X axis and the response is plotted on the Y axis. More typically, the logarithm of the dose is plotted on the X axis, most often generating a sigmoidal curve with the steepest portion in the middle. The No Observable Effect Level isms (NOEL) refers to the lowest experimental dose for which no measurable effect is observed, and the threshold dose refers to the first point along the graph that indicates a response above zero. As a general rule, stronger drugs generate steeper dose response curves. For many drugs, the desired effects are found at doses slightly greater than the threshold dose, often because lower doses are relatively ineffective and higher dose lead to undesired side effects. For in vivo generated dose response curves, a curve can be characterized by values such as µg/kg, mg/kg, or g/kg of body-weight, if desired.

Mole

A Y

A Y

MOLE

A Y

The No Observable Effect Level isms rioph trans: tems
rioph trans: tems
rus);
vector mosa
(e.g.,
ing n

tems.

For batch comparisons, it can be useful to calculate the coefficient of variation (CV) between different dose response curves of different batches (e.g., between different batches of AARS protein fragments, antibodies, or other agents), in part 40 because the CV allows comparison between data sets with different units or different means. For instance, in certain exemplary embodiments, two or three or more different batches of AARS protein fragments or other agents have a CV between them of less than about 15%, 14%, 13%, 12%, 11%, 45 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1% for a 4, 5, 6, 7, or 8 point dose curve. In certain embodiments, the dose response curve is measured in a cell-based assay, and its readout relates to an increase or a decrease in a selected non-canonical activity of the AARS protein fragment. In cer- 50 tain embodiments, the dose response curve is measured in a cell release assay or animal model (e.g., mouse model), and its readout relates to cell death or animal death. Other variations will be apparent to persons skilled in the art.

VIII. Expression and Purification Systems

Embodiments of the present invention include methods and related compositions for expressing and purifying the AARS protein fragments or other polypeptide-based agents of the invention. Such recombinant AARS polypeptides can be conveniently prepared using standard protocols as described for example in Sambrook, et al., (1989, supra), in particular Sections 16 and 17; Ausubel et al., (1994, supra), in particular Chapters 10 and 16; and Coligan et al., Current 65 Protocols in Protein Science (John Wiley & Sons, Inc. 1995-1997), in particular Chapters 1, 5 and 6. As one general

90

example, AARS polypeptides may be prepared by a procedure including one or more of the steps of: (a) preparing a construct comprising a polynucleotide sequence that encodes a AARS polypeptide and that is operably linked to a regulatory element; (b) introducing the construct into a host cell; (c) culturing the host cell to express the AARS polypeptide; and (d) isolating the AARS polypeptide from the host cell.

AARS polynucleotides are described elsewhere herein. In order to express a desired polypeptide, a nucleotide sequence encoding the polypeptide, or a functional equivalent, may be inserted into appropriate expression vector, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding a polypeptide of interest and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described in Sambrook et al., Molecular Cloning, A Laboratory Manual (1989), and Ausubel et al., Current Protocols in Molecular Biology (1989).

A variety of expression vector/host systems are known and may be utilized to contain and express polynucleotide sequences. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems, including mammalian cell and more specifically human cell systems.

The "control elements" or "regulatory sequences" present in an expression vector are those non-translated regions of the vector-enhancers, promoters, 5' and 3' untranslated regions—which interact with host cellular proteins to carry out transcription and translation. Such elements may vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the PBLUESCRIPT phagemid (Stratagene, La Jolla, Calif.) or PSPORT1 plasmid (Gibco BRL, Gaithersburg, Md.) and the like may be used. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are generally preferred. If it is necessary to generate a cell line that contains multiple copies of the sequence encoding a polypeptide, vectors based on SV40 or EBV may be advantageously used with an appropriate selectable marker.

In bacterial systems, a number of expression vectors may be selected depending upon the use intended for the expressed polypeptide. For example, when large quantities are needed, vectors which direct high level expression of fusion proteins that are readily purified may be used. Such vectors include, but are not limited to, the multifunctional $E.\ coli$ cloning and expression vectors such as BLUESCRIPT (Stratagene), in which the sequence encoding the polypeptide of interest may be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of β -galactosidase so that a hybrid protein is produced; pIN vectors (Van Heeke & Schuster, $J.\ Biol.\ Chem.\ 264:5503\ 5509\ (1989))$; and the like. pGEX Vectors (Promega, Madison,

Wis.) may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems may be designed to include heparin, thrombin, or factor XA protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.

Certain embodiments may employ E. coli-based expression systems (see, e.g., Structural Genomics Consortium et al., Nature Methods. 5:135-146, 2008). These and related embodiments may rely partially or totally on ligation-independent cloning (LIC) to produce a suitable expression vector. In specific embodiments, protein expression may be controlled by a T7 RNA polymerase (e.g., pET vector series). These and related embodiments may utilize the expression host strain BL21(DE3), a λDE3 lysogen of BL21 that supports T7-mediated expression and is deficient in lon and 20 ompT proteases for improved target protein stability. Also included are expression host strains carrying plasmids encoding tRNAs rarely used in E. coli, such as ROSETTATM (DE3) and Rosetta 2 (DE3) strains. Cell lysis and sample handling may also be improved using reagents sold under the trade- 25 marks BENZONASE® nuclease and BUGBUSTER® Protein Extraction Reagent. For cell culture, auto-inducing media can improve the efficiency of many expression systems, including high-throughput expression systems. Media of this type (e.g., OVERNIGHT EXPRESSTM Autoinduction 30 System) gradually elicit protein expression through metabolic shift without the addition of artificial inducing agents such as IPTG. Particular embodiments employ hexahistidine tags (such as those sold under the trademark HIS•TAG® fusions), followed by immobilized metal affinity chromatog- 35 raphy (IMAC) purification, or related techniques. In certain aspects, however, clinical grade proteins can be isolated from E. coli inclusion bodies, without or without the use of affinity tags (see, e.g., Shimp et al., Protein Expr Purif. 50:58-67, 2006). As a further example, certain embodiments may 40 employ a cold-shock induced E. coli high-yield production system, because over-expression of proteins in Escherichia coli at low temperature improves their solubility and stability (see, e.g., Qing et al., Nature Biotechnology. 22:877-882, 2004).

Also included are high-density bacterial fermentation systems. For example, high cell density cultivation of *Ralstonia eutropha* allows protein production at cell densities of over 150 g/L, and the expression of recombinant proteins at titers exceeding 10 g/L.

In the yeast Saccharomyces cerevisiae, a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH may be used. For reviews, see Ausubel et al. (supra) and Grant et al., Methods Enzymol. 153:516-544 (1987). Also included are Pichia pandoris 55 expression systems (see, e.g., Li et al., Nature Biotechnology. 24, 210-215, 2006; and Hamilton et al., Science, 301:1244, 2003). Certain embodiments include yeast systems that are engineered to selectively glycosylate proteins, including yeast that have humanized N-glycosylation pathways, among 60 others (see, e.g., Hamilton et al., Science. 313:1441-1443, 2006; Wildt et al., Nature Reviews Microbiol. 3:119-28, 2005; and Gerngross et al., Nature-Biotechnology. 22:1409-1414, 2004; U.S. Pat. Nos. 7,629,163; 7,326,681; and 7,029,872). Merely by way of example, recombinant yeast cultures can be 65 grown in Fernbach Flasks or 15 L, SOL, 100 L, and 200 L fermentors, among others.

92

In cases where plant expression vectors are used, the expression of sequences encoding polypeptides may be driven by any of a number of promoters. For example, viral promoters such as the 35S and 19S promoters of CaMV may be used alone or in combination with the omega leader sequence from TMV (Takamatsu, EMBO J. 6:307-311 (1987)). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used (Coruzzi et al., EMBO J. 3:1671-1680 (1984); Broglie et al., Science 224:838-843 (1984); and Winter et al., Results Probl. Cell Differ. 17:85-105 (1991)). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (see, e.g., Hobbs in McGraw Hill, Yearbook of Science and Technology, pp. 191-196 (1992)).

An insect system may also be used to express a polypeptide of interest. For example, in one such system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia cells. The sequences encoding the polypeptide may be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of the polypeptide-encoding sequence will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses may then be used to infect, for example, S. frugiperda cells or Trichoplusia cells in which the polypeptide of interest may be expressed (Engelhard et al., Proc. Natl. Acad. Sci. U.S.A. 91:3224-3227 (1994)). Also included are baculovirus expression systems, including those that utilize SF9, SF21, and T. ni cells (see, e.g., Murphy and Piwnica-Worms, Curr Protoc Protein Sci. Chapter 5:Unit5.4, 2001). Insect systems can provide post-translation modifications that are similar to mammalian systems.

In mammalian host cells, a number of viral-based expression systems are generally available. For example, in cases where an adenovirus is used as an expression vector, sequences encoding a polypeptide of interest may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain a viable virus which is capable of expressing the polypeptide in infected host cells (Logan & Shenk, *Proc. Natl. Acad. Sci. U.S.A.* 81:3655-3659 (1984)). In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.

Examples of useful mammalian host cell lines include 50 monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells sub-cloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); mouse sertoli cells (TM4, Mather, Biol. Reprod. 23:243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TR1 cells (Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2). Other useful mammalian host cell lines include Chinese hamster ovary (CHO) cells, including DHFR-CHO cells (Urlaub et al., PNAS USA 77:4216 (1980)); and myeloma cell lines such as NSO and Sp2/0. For

a review of certain mammalian host cell lines suitable for antibody production, see, e.g., Yazaki and Wu, *Methods in Molecular Biology*, Vol. 248 (B. K. C Lo, ed., Humana Press, Totowa, N.J., 2003), pp. 255-268. Certain preferred mammalian cell expression systems include CHO and HEK293-cell based expression systems. Mammalian expression systems can utilize attached cell lines, for example, in T-flasks, roller bottles, or cell factories, or suspension cultures, for example, in 1 L and 5 L spinners, 5 L, 14 L, 40 L, 100 L and 200 L stir tank bioreactors, or 20/50 L and 100/200 L WAVE bioreactors, among others known in the art.

Also included is cell-free expression of proteins. These and related embodiments typically utilize purified RNA polymerase, ribosomes, tRNA and ribonucleotides; these reagents may be produced by extraction from cells or from a cell-based expression system.

Specific initiation signals may also be used to achieve more efficient translation of sequences encoding a polypeptide of interest. Such signals include the ATG initiation codon and 20 adjacent sequences. In cases where sequences encoding the polypeptide, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a portion 25 thereof, is inserted, exogenous translational control signals including the ATG initiation codon should be provided. Furthermore, the initiation codon should be in the correct reading frame to ensure translation of the entire insert. Exogenous translational elements and initiation codons may be of various 30 origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used, such as those described in the literature (Scharf. et al., Results Probl. Cell Differ. 20:125-162 (1994)).

In addition, a host cell strain may be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, post-translational modifications such as acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to facilitate correct insertion, folding and/or function. Different host cells such as yeast, CHO, HeLa, MDCK, HEK293, and W138, in addition to bacterial cells, which have or even lack specific cellular machinery and characteristic mechanisms for such post-translational activities, may be chosen to ensure the correct modification and processing of the foreign protein.

For long-term, high-yield production of recombinant pro- 50 teins, stable expression is generally preferred. For example, cell lines which stably express a polynucleotide of interest may be transformed using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on 55 a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1-2 days in an enriched media before they are switched to selective media. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells 60 which successfully express the introduced sequences. Resistant clones of stably transformed cells may be proliferated using tissue culture techniques appropriate to the cell type. Transient production, such as by transient transfection or infection, can also be employed. Exemplary mammalian 65 expression systems that are suitable for transient production include HEK293 and CHO-based systems.

94

Any number of selection systems may be used to recover transformed or transduced cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler et al., Cell 11:223-232 (1977)) and adenine phosphoribosyltransferase (Lowy et al., Cell 22:817-823 (1990)) genes which can be employed in tk- or aprt-cells, respectively. Also, antimetabolite, antibiotic or herbicide resistance can be used as the basis for selection; for example, dhfr which confers resistance to methotrexate (Wigler et al., Proc. Natl. Acad. Sci. U.S.A. 77:3567-70 (1980)); npt, which confers resistance to the aminoglycosides, neomycin and G-418 (Colbere-Garapin et al., J. Mol. Biol. 150:1-14 (1981)); and als or pat, which confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murry, supra). Additional selectable genes have been described, for example, trpB, which allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, Proc. Natl. Acad. Sci. U.S.A. 85:8047-51 (1988)). The use of visible markers has gained popularity with such markers as green fluorescent protein (GFP) and other fluorescent proteins (e.g., RFP, YFP), anthocyanins, β-glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, being widely used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (see, e.g., Rhodes et al., Methods Mol. Biol. 55:121-131 (1995)).

Embodiments of the present invention also include high-throughput protein production systems, or micro-production systems. Certain aspects may utilize, for example, hexa-histidine fusion tags for protein expression and purification on metal chelate-modified slide surfaces or MagneHis Ni-Particles (see, e.g., Kwon et al., *BMC Biotechnol.* 9:72, 2009; and Lin et al., *Methods Mol Biol.* 498:129-41, 2009)). Also included are high-throughput cell-free protein expression systems (see, e.g., Sitaraman et al., *Methods Mol Biol.* 498: 229-44, 2009). These and related embodiments can be used, for example, to generate microarrays of AARS protein fragment(s), which can then be used for screening libraries to identify agents that interact with the AARS protein fragment(s).

A variety of protocols for detecting and measuring the expression of polynucleotide-encoded products, using binding agents or antibodies such as polyclonal or monoclonal antibodies specific for the product, are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), western immunoblots, radioimmunoassays (RIA), and fluorescence activated cell sorting (FACS). These and other assays are described, among other places, in Hampton et al., *Serological Methods, a Laboratory Manual* (1990) and Maddox et al., *J. Exp. Med.* 158:1211-1216 (1983).

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides include oligolabeling, nick translation, end-labeling or PCR amplification using a labeled nucleotide. Alternatively, the sequences, or any portions thereof may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits. Suitable reporter molecules or labels, which may be used include radionuclides, enzymes, fluorescent,

chemiluminescent, or chromogenic agents as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with a polynucleotide sequence of interest may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. 5 Certain specific embodiments utilize serum free cell expression systems. Examples include HEK293 cells and CHO cells that can be grown in serum free medium (see, e.g., Rosser et al., Protein Expr. Purif 40:237-43, 2005; and U.S. Pat. No. 6,210,922).

The protein produced by a recombinant cell may be secreted or contained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides of the invention may be designed to contain sig- 15 nal sequences which direct secretion of the encoded polypeptide through a prokaryotic or eukaryotic cell membrane. Other recombinant constructions may be used to join sequences encoding a polypeptide of interest to nucleotide sequence encoding a polypeptide domain which will facili- 20 tate purification and/or detection of soluble proteins. Examples of such domains include cleavable and non-cleavable affinity purification and epitope tags such as avidin, FLAG tags, poly-histidine tags (e.g., 6xHis), cMyc tags, V5-tags, glutathione S-transferase (GST) tags, and others.

The protein produced by a recombinant cell can be purified and characterized according to a variety of techniques known in the art. Exemplary systems for performing protein purification and analyzing protein purity include fast protein liquid chromatography (FPLC) (e.g., AKTA and Bio-Rad FPLC 30 systems), high-pressure liquid chromatography (HPLC) (e.g., Beckman and Waters HPLC). Exemplary chemistries for purification include ion exchange chromatography (e.g., Q, S), size exclusion chromatography, salt gradients, affinity purification (e.g., Ni, Co, FLAG, maltose, glutathione, pro- 35 tein A/G), gel filtration, reverse-phase, ceramic HYPERD® ion exchange chromatography, and hydrophobic interaction columns (HIC), among others known in the art. Also included are analytical methods such as SDS-PAGE (e.g., coomassie, be utilized during any step of the production or purification process, typically to measure the purity of the protein composition.

Also included are methods of concentrating AARS protein fragments, and composition comprising concentrated soluble 45 proteins. In different aspects such concentrated solutions of AARS polypeptides may comprise proteins at a concentration of about 5 mg/mL; or about 8 mg/mL; or about 10 mg/mL; about 15 mg/mL; or about 20 mg/mL.

In one aspect such compositions may be substantially 50 monodisperse, meaning that the AARS polypeptide compositions exist primarily (i.e. at least about 90%, or greater) in one apparent molecular weight form when assessed for example, by size exclusion chromatography, dynamic light scattering, or analytical ultracentrifugation.

In another aspect, such compositions have a purity (on a protein basis) of at least about 90%, or in some aspects at least about 95% purity, or in some embodiments, at least 98% purity. Purity may be determined via any routine analytical method as known in the art.

In another aspect, such compositions have a high molecular weight aggregate content of less than about 10%, compared to the total amount of protein present, or in some embodiments such compositions have a high molecular weight aggregate content of less than about 5%, or in some 65 aspects such compositions have a high molecular weight aggregate content of less than about 3%, or in some embodi96

ments a high molecular weight aggregate content of less than about 1%. High molecular weight aggregate content may be determined via a variety of analytical techniques including for example, by size exclusion chromatography, dynamic light scattering, or analytical ultracentrifugation.

In certain embodiments, as noted herein, the AARS polypeptide compositions have an endotoxin content of less than about 10 EU/mg of AARS polypeptide, or less than about 5 EU/mg of AARS polypeptide, less than about 3 EU/mg of AARS polypeptide, or less than about 1 EU/mg of AARS polypeptide.

Examples of concentration approaches contemplated herein include lyophilization, which is typically employed when the solution contains few soluble components other than the protein of interest. Lyophilization is often performed after HPLC run, and can remove most or all volatile components from the mixture. Also included are ultrafiltration techniques, which typically employ one or more selective permeable membranes to concentrate a protein solution. The membrane allows water and small molecules to pass through and retains the protein; the solution can be forced against the membrane by mechanical pump, gas pressure, or centrifugation, among other techniques.

In certain embodiments, the reagents, AARS protein frag-25 ments, or related agents (e.g., antibodies) have a purity of at least about 90%, as measured according to routine techniques in the art. In certain embodiments, such as diagnostic compositions or certain therapeutic compositions, the AARS compositions of the present invention have a purity of at least about 95%. In specific embodiments, such as therapeutic or pharmaceutical compositions, the AARS compositions of the present invention have a purity of at least about 97% or 98% or 99%. In other embodiments, such as when being used as reference or research reagents, AARS protein fragments can be of lesser purity, and may have a purity of at least about 50%, 60%, 70%, or 80%. Purity can be measured overall or in relation to selected components, such as other proteins, e.g., purity on a protein basis.

Purified AARS protein fragments can also be characterized silver stain), immunoblot, Bradford, and ELISA, which may 40 according to their biological characteristics. Examples include binding affinity or binding kinetics to a selected ligand (e.g., a cellular binding partner of the AARS protein fragment such as a cell-surface receptor or an extracellular domain thereof), and the presence or levels of one or more canonical or non-canonical biological activity, as described herein. Binding affinity and binding kinetics can be measured according to a variety of techniques known in the art, such as Biacore® and related technologies that utilize surface plasmon resonance (SPR), an optical phenomenon that enables detection of unlabeled interactants in real time. SPR-based biosensors can be used in determination of active concentration, screening and characterization in terms of both affinity and kinetics. The presence or levels of one or more canonical or non-canonical biological activities can be measured 55 according to cell-based assays, including those that utilize a cellular binding partner (e.g., cell-surface receptor) of a selected AARS protein fragment, which is functionally coupled to a readout or indicator, such as a fluorescent or luminescent indicator of a non-canonical biological activity, 60 as described herein.

In certain embodiments, as noted above, the AARS polypeptide compositions are about substantially endotoxin free, including, for example, about 95% endotoxin free, preferably about 99% endotoxin free, and more preferably about 99.99% endotoxin free. The presence of endotoxins can be detected according to routine techniques in the art, as described herein. In specific embodiments, the AARS com-

positions are made from a eukaryotic cell such as a mammalian or human cell in substantially serum free media.

In certain embodiments, the AARS polypeptide compositions comprise less than about 10% wt/wt high molecular weight aggregates, or less than about 5% wt/wt high molecular weight aggregates, or less than about 2% wt/wt high molecular weight aggregates, or less than about or less than about 1% wt/wt high molecular weight aggregates.

Also included are protein-based analytical assays and methods, which can be used to assess, for example, protein 10 purity, size, solubility, and degree of aggregation, among other characteristics. Protein purity can be assessed a number of ways. For instance, purity can be assessed based on primary structure, higher order structure, size, charge, hydrophobicity, and glycosylation. Examples of methods for 15 assessing primary structure include N- and C-terminal sequencing and peptide-mapping (see, e.g., Allen et al., Biologicals. 24:255-275, 1996)). Examples of methods for assessing higher order structure include circular dichroism (see, e.g., Kelly et al., Biochim Biophys Acta. 1751:119-139, 20 2005), fluorescent spectroscopy (see, e.g., Meagher et al., J. Biol. Chem. 273:23283-89, 1998), FT-IR, amide hydrogendeuterium exchange kinetics, differential scanning calorimetry, NMR spectroscopy, immunoreactivity with conformationally sensitive antibodies. Higher order structure can also 25 be assessed as a function of a variety of parameters such as pH, temperature, or added salts. Examples of methods for assessing protein characteristics such as size include analytical ultracentrifugation and size exclusion HPLC (SEC-HPLC), and exemplary methods for measuring charge 30 include ion-exchange chromatography and isolectric focusing. Hydrophobicity can be assessed, for example, by reversephase HPLC and hydrophobic interaction chromatography HPLC. Glycosylation can affect pharmacokinetics (e.g., clearance), conformation or stability, receptor binding, and 35 protein function, and can be assessed, for example, by mass spectrometry and nuclear magnetic resonance (NMR) spec-

As noted above, certain embodiments include the use of SEC-HPLC to assess protein characteristics such as purity, 40 size (e.g., size homogeneity) or degree of aggregation, and/or to purify proteins, among other uses. SEC, also including gel-filtration chromatography (GFC) and gel-permeation chromatography (GPC), refers to a chromatographic method in which molecules in solution are separated in a porous 45 material based on their size, or more specifically their hydrodynamic volume, diffusion coefficient, and/or surface properties. The process is generally used to separate biological molecules, and to determine molecular weights and molecular weight distributions of polymers. Typically, a biological or 50 protein sample (such as a protein extract produced according to the protein expression methods provided herein and known in the art) is loaded into a selected size-exclusion column with a defined stationary phase (the porous material), preferably a phase that does not interact with the proteins in the sample. In 55 certain aspects, the stationary phase is composed of inert particles packed into a dense three-dimensional matrix within a glass or steel column. The mobile phase can be pure water, an aqueous buffer, an organic solvent, or a mixture thereof. The stationary-phase particles typically have small pores and/ 60 or channels which only allow molecules below a certain size to enter. Large particles are therefore excluded from these pores and channels, and their limited interaction with the stationary phase leads them to elute as a "totally-excluded" peak at the beginning of the experiment. Smaller molecules, 65 which can fit into the pores, are removed from the flowing mobile phase, and the time they spend immobilized in the

98

stationary-phase pores depends, in part, on how far into the pores they penetrate. Their removal from the mobile phase flow causes them to take longer to elute from the column and results in a separation between the particles based on differences in their size. A given size exclusion column has a range of molecular weights that can be separated. Overall, molecules larger than the upper limit will not be trapped by the stationary phase, molecules smaller than the lower limit will completely enter the solid phase and elute as a single band, and molecules within the range will elute at different rates, defined by their properties such as hydrodynamic volume. For examples of these methods in practice with pharmaceutical proteins, see Bruner et al., *Journal of Pharmaceutical and Biomedical Analysis*. 15: 1929-1935, 1997.

Protein purity for clinical applications is also discussed, for example, by Anicetti et al. (Trends in Biotechnology. 7:342-349, 1989). More recent techniques for analyzing protein purity include, without limitation, the LabChip GXII, an automated platform for rapid analysis of proteins and nucleic acids, which provides high throughput analysis of titer, sizing, and purity analysis of proteins. In certain non-limiting embodiments, clinical grade proteins such as protein fragments and antibodies can be obtained by utilizing a combination of chromatographic materials in at least two orthogonal steps, among other methods (see, e.g., Therapeutic Proteins: Methods and Protocols. Vol. 308, Eds., Smales and James, Humana Press Inc., 2005). Typically, protein agents (e.g., AARS protein fragments, antibodies, binding agents) and other agents (e.g., antisense, RNAi, small molecules) are substantially endotoxin-free, as measured according to techniques known in the art and described herein.

Protein solubility assays are also included. Such assays can be utilized, for example, to determine optimal growth and purification conditions for recombinant production, to optimize the choice of buffer(s), and to optimize the choice of AARS protein fragments or variants thereof. Solubility or aggregation can be evaluated according to a variety of parameters, including temperature, pH, salts, and the presence or absence of other additives. Examples of solubility screening assays include, without limitation, microplate-based methods of measuring protein solubility using turbidity or other measure as an end point, high-throughput assays for analysis of the solubility of purified recombinant proteins (see, e.g., Stenvall et al., Biochim Biophys Acta. 1752:6-10, 2005), assays that use structural complementation of a genetic marker protein to monitor and measure protein folding and solubility in vivo (see, e.g., Wigley et al., Nature Biotechnology. 19:131-136, 2001), and electrochemical screening of recombinant protein solubility in Escherichia coli using scanning electrochemical microscopy (SECM) (see, e.g., Nagamine et al., Biotechnology and Bioengineering. 96:1008-1013, 2006), among others. AARS protein fragments with increased solubility (or reduced aggregation) can be identified or selected for according to routine techniques in the art, including simple in vivo assays for protein solubility (see, e.g., Maxwell et al., Protein Sci. 8:1908-11, 1999)

Protein solubility and aggregation can also be measured by dynamic light scattering techniques. Aggregation is a general term that encompasses several types of interactions or characteristics, including soluble/insoluble, covalent/noncovalent, reversible/irreversible, and native/denatured interactions and characteristics. For protein therapeutics, the presence of aggregates is typically considered undesirable because of the concern that aggregates may cause an immunogenic reaction (e.g., small aggregates), or may cause adverse events on administration (e.g., particulates). Dynamic light scattering refers to a technique that can be used

to determine the size distribution profile of small particles in suspension or polymers such as proteins in solution. This technique, also referred to as photon correlation spectroscopy (PCS) or quasi-elastic light scattering (QELS), uses scattered light to measure the rate of diffusion of the protein particles. 5 Fluctuations of the scattering intensity can be observed due to the Brownian motion of the molecules and particles in solution. This motion data can be conventionally processed to derive a size distribution for the sample, wherein the size is given by the Stokes radius or hydrodynamic radius of the 10 protein particle. The hydrodynamic size depends on both mass and shape (conformation). Dynamic scattering can detect the presence of very small amounts of aggregated protein (<0.01% by weight), even in samples that contain a large range of masses. It can also be used to compare the 15 stability of different formulations, including, for example, applications that rely on real-time monitoring of changes at elevated temperatures. Accordingly, certain embodiments include the use of dynamic light scattering to analyze the solubility and/or presence of aggregates in a sample that 20 contains an AARS protein fragment, antibody, or other agent of the invention.

IX. Diagnostic Methods and Compositions

AARS agents such as AARS protein fragments, AARS polynucleotides, and antibodies and other binding agents described herein can be used in diagnostic assays and diagnostic compositions. Included are biochemical, histological, and cell-based methods and compositions, among others.

These and related embodiments include the detection of the AARS polynucleotide sequence(s) or corresponding AARS polypeptide sequence(s) or portions thereof of one or more newly identified AARS protein fragments, also referred to as AARS polypeptides. For instance, certain aspects 35 include detection of the AARS polynucleotide sequence(s) or corresponding polypeptide sequence(s) or portions thereof of one or more newly identified AARS splice variants, and/or one or more splice junctions of those splice variants. In cerpolypeptide sequence(s) of at least one of the splice junctions is unique to that particular AARS splice variant.

Also included is the direct detection of AARS protein fragments, including splice variants, proteolytic fragments, and others. In certain embodiments, the presence or levels of 45 one or more newly identified AARS protein fragments associate or correlate with one or more cellular types or cellular states. Hence, the presence or levels of an AARS polypeptide or polynucleotide can be used to distinguish between different cellular types or different cellular states. The presence or 50 levels of AARS protein fragments or their related polynucleotides can be detected according to polynucleotide and/or polypeptide-based diagnostic techniques, as described herein and known in the art.

Certain aspects can employ the AARS protein fragments, 55 antibody, or AARS polynucleotides as part of a companion diagnostic method, typically to assess whether a subject or population subjects will respond favorably to a specific medical treatment. For instance, a given AARS therapeutic agent (e.g., protein fragment, antisense, RNAi, antibody, binding 60 agent) could be identified as suitable for a subject or certain populations of subjects based on whether the subject(s) have one or more selected biomarkers for a given disease or condition. Examples of biomarkers include serum/tissue markers as well as markers that can be identified by medical imaging techniques. In certain embodiments, a naturally-occurring AARS protein fragment (or its corresponding polynucle100

otide) may itself provide a serum and/or tissue biomarker that can be utilized to measure drug outcome or assess the desirability of drug use in a specific subject or a specific population of subjects. In certain aspects, the identification of an AARS polypeptide or polynucleotide reference sequence may include characterizing the differential expression of that sequence, whether in a selected subject, selected tissue, or otherwise, as described herein and known in the art.

Certain of the methods provided herein rely on the differential expression of an AARS polypeptide or polynucleotide to characterize the condition or state of a cell, tissue, or subject, and to distinguish it from another cell, tissue, or subject. Non-limiting examples include methods of detecting the presence or levels of an AARS polypeptide or polynucleotide in a biological sample to distinguish between cells or tissues of different species, cells of different tissues or organs, cellular developmental states such as neonatal and adult, cellular differentiation states, conditions such as healthy, diseased and treated, intracellular and extracellular fractions, in addition to primary cell cultures and other cell cultures, such as immortalized cell cultures.

Differential expression includes a statistically significant difference in one or more gene expression levels of an AARS polynucleotide or polypeptide reference sequence compared to the expression levels of the same sequence in an appropriate control. The statistically significant difference may relate to either an increase or a decrease in expression levels, as measured by RNA levels, protein levels, protein function, or any other relevant measure of gene expression such as those described herein. Also included is a comparison between an AARS polynucleotide or polypeptide of the invention and a full-length or wild-type cytosolic or mitochondrial AARS sequence, typically of the same or corresponding type. Differential expression can be detected by a variety of techniques in the art and described herein, including polynucleotide and polypeptide based techniques, such as real-time PCR, subtractive hybridization, polynucleotide and polypeptide arrays, and others.

A result is typically referred to as statistically significant if tain embodiments, the polynucleotide or corresponding 40 it is unlikely to have occurred by chance. The significance level of a test or result relates traditionally to a frequentist statistical hypothesis testing concept. In simple cases, statistical significance may be defined as the probability of making a decision to reject the null hypothesis when the null hypothesis is actually true (a decision known as a Type I error, or "false positive determination"). This decision is often made using the p-value: if the p-value is less than the significance level, then the null hypothesis is rejected. The smaller the p-value, the more significant the result. Bayes factors may also be utilized to determine statistical significance (see, e.g., Goodman S., Ann Intern Med 130:1005-13, 1999).

> In more complicated, but practically important cases, the significance level of a test or result may reflect an analysis in which the probability of making a decision to reject the null hypothesis when the null hypothesis is actually true is no more than the stated probability. This type of analysis allows for those applications in which the probability of deciding to reject may be much smaller than the significance level for some sets of assumptions encompassed within the null hypothesis.

In certain exemplary embodiments, statistically significant differential expression may include situations wherein the expression level of a given AARS sequence provides at least about a 1.2×, 1.3×, 1.4×, 1.5×, 1.6×, 1.7×, 1.8×, 1.9×, 2.0×, 2.2×, 2.4×, 2.6×, 2,8×, 3.0×, 4.0×, 5.0×, 6.0×, 7.0×, 8.0×, 9.0×, 10.0×, 15.0×, 20.0×, 50.0×, 100.0×, or greater difference in expression (i.e., differential expression that may be

higher or lower expression) in a suspected biological sample as compared to an appropriate control, including all integers and decimal points in between (e.g., 1.24×, 1.25×, 2.1×, 2.5×, 60.0×, 75.0×, etc.). In certain embodiments, statistically significant differential expression may include situations 5 wherein the expression level of a given AARS sequence provides at least about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 percent (%) or greater difference in expression (i.e., differential expression that may 10 be higher or lower) in a suspected biological sample as compared to an appropriate control, including all integers and decimal points in between.

As an additional example, differential expression may also be determined by performing Z-testing, i.e., calculating an 15 absolute Z score, as described herein and known in the art (see Example 1). Z-testing is typically utilized to identify significant differences between a sample mean and a population mean. For example, as compared to a standard normal table (e.g., a control tissue), at a 95% confidence interval (i.e., at the 20 5% significance level), a Z-score with an absolute value greater than 1.96 indicates non-randomness. For a 99% confidence interval, if the absolute Z is greater than 2.58, it means that p<0.01, and the difference is even more significant—the null hypothesis can be rejected with greater confidence. In 25 these and related embodiments, an absolute Z-score of 1.96, 2, 2.58, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more, including all decimal points in between (e.g., 10.1, 10.6, 11.2, etc.), may provide a strong measure of statistical significance. In certain embodiments, an absolute 30 Z-score of greater than 6 may provide exceptionally high statistical significance.

Substantial similarly relates generally to the lack of a statistically significant difference in the expression levels between the biological sample and the reference control. 35 Examples of substantially similar expression levels may include situations wherein the expression level of a given SSCIGS provides less than about a 0.05×, 0.1×, 0.2×, 0.3×, $0.4\times$, $0.5\times$, $0.6\times$, $0.7\times$, $0.8\times$, $0.9\times$, $1.0\times$, $1.1\times$, $1.2\times$, $1.3\times$, or 1.4× difference in expression (i.e., differential expression that 40 may be higher or lower expression) in a suspected biological sample as compared to a reference sample, including all decimal points in between (e.g., $0.15\times$, $0.25\times$, $0.35\times$, etc.). In certain embodiments, differential expression may include situations wherein the expression level of a given AARS 45 sequence provides less than about 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50 percent (%) difference in expression (i.e., differential expression that may be higher or lower) in a suspected biological sample as compared to a reference sample, including all 50 decimal points in between.

In certain embodiments, such as when using an Affymetrix Microarray to measure the expression levels of an AARS polynucleotide or polypeptide reference sequence, differential expression may also be determined by the mean expression value summarized by Affymetrix Microarray Suite 5 software (Affymetrix, Santa Clara, Calif.), or other similar software, typically with a scaled mean expression value of 1000.

Embodiments of the present invention include methods of 60 detecting the presence or levels of an AARS polynucleotide or polypeptide reference sequence or a portion thereof to distinguish between cells or tissues or other biological sample of a different organism or species, wherein the presence or levels of that sequence associates with a selected organism or 65 species. General examples include methods of distinguishing between humans and any combination of bacteria, fungi,

plants, and other non-human animals. Included within animals are methods of distinguishing between humans and any combination of vertebrates and invertebrates, including vertebrates such as fish, amphibians, reptiles, birds, and nonhuman mammals, and invertebrates such as insects, mollusks, crustaceans, and corals. Included within non-human mammals are methods of distinguishing between humans and any combination of non-human mammals from the Order Afrosoricida, Macroscelidea, Tubulidentata, Hyracoidea, Proboscidea, Sirenia, Cingulata, Pilosa, Scandentia, Dermoptera, Primates, Rodentia, Lagomorpha, Erinaceomorpha, Soricomorpha, Chiroptera, Pholidota, Cetacea, Carnivora, Perissodactyla, or Artiodactyla. Included within the Primate Order are monkeys, apes, gorillas, and chimpanzees, among others known in the art. Accordingly, the presence or levels of an AARS polynucleotide or polypeptide reference sequence or variant, as described herein, may be used to identify the source of a given biological sample, such as a cell, tissue, or organ, by distinguishing between any combination of these organisms, or by distinguishing between humans and any one or more of these organisms, such as a panel of organisms. In certain embodiments, the source of a given biological sample may also be determined by comparing the presence or levels of an AARS sequence or a portion thereof to a pre-determined

Embodiments of the present invention include methods of detecting the presence or levels of an AARS polynucleotide or polypeptide reference sequence or a portion thereof to distinguish between cells or other biological samples that originate from different tissues or organs. Non-limiting examples include methods of distinguishing between a cell or other biological sample that originates from any combination of skin (e.g., dermis, epidermis, subcutaneous layer), hair follicles, nervous system (e.g., brain, spinal cord, peripheral nerves), auditory system or balance organs (e.g., inner ear, middle ear, outer ear), respiratory system (e.g., nose, trachea, lungs), gastroesophogeal tissues, the gastrointestinal system (e.g., mouth, esophagus, stomach, small intestines, large intestines, rectum), vascular system (e.g., heart, blood vessels and arteries), liver, gallbladder, lymphatic/immune system (e.g., lymph nodes, lymphoid follicles, spleen, thymus, bone marrow), uro-genital system (e.g., kidneys, ureter, bladder, urethra, cervix, Fallopian tubes, ovaries, uterus, vulva, prostate, bulbourethral glands, epididymis, prostate, seminal vesicles, testicles), musculoskeletal system (e.g., skeletal muscles, smooth muscles, bone, cartilage, tendons, ligaments), adipose tissue, mammary tissue, and the endocrine system (e.g., hypothalamus, pituitary, thyroid, pancreas, adrenal glands). Hence, based on the association of an AARS polynucleotide or polypeptide sequence as described herein, these methods may be used to identify or characterize the tissue or organ from which a cell or other biological sample is

Embodiments of the present invention include methods of detecting the presence or levels of an AARS polynucleotide or polypeptide reference sequence or a portion thereof to distinguish between or characterize the developmental or differentiation state of the cell. Also included are methods of differentiating between germ cells, stem cells, and somatic cells. Examples of developmental states include neonatal and adult. Examples of cellular differentiation states include all of the discreet and identifiable stages between a totipotent cell, a pluripotent cell, a multipotent progenitor stem cell and a mature, fully differentiated cell.

A totipotent cell has total potential, typically arises during sexual and asexual reproduction, and includes and spores and zygotes, though in certain instances cells can dedifferentiate

and regain totipotency. A pluripotent cell includes a stem cell that has the potential to differentiate into any of the three germ layers, including the endoderm (interior stomach lining, gastrointestinal tract, the lungs), the mesoderm (muscle, bone, blood, urogenital), and the ectoderm (epidermal tissues and 5 nervous system). Multipotent progenitor cells are typically capable of differentiating into a limited number of tissue types. Examples of multipotent cells include, without limitation, hematopoietic stem cells (adult stem cells) from the bone marrow that give rise to immune cells such as red blood 10 cells, white blood cells, and platelets, mesenchymal stem cells (adult stem cells) from the bone marrow that give rise to stromal cells, fat cells, and various types of bone cells, epithelial stem cells (progenitor cells) that give rise to the various types of skin cells, and muscle satellite cells (progenitor cells) that contribute to differentiated muscle tissue. Accordingly, the presence or levels of particular AARS polynucleotide or polypeptide sequence (e.g., splice junction of an AARS splice variant, AARS proteolytic fragment), can be used to distinguish between or characterize the above-noted cellular dif- 20 ferentiation states, as compared to a control or a predetermined level.

Embodiments of the present invention include methods of detecting the presence or levels of an AARS polynucleotide or polypeptide reference sequence to characterize or diagnose 25 the condition or a cell, tissue, organ, or subject, in which that condition may be characterized as healthy, diseased, at risk for being diseased, or treated. For such diagnostic purposes, the term "diagnostic" or "diagnosed" includes identifying the presence or nature of a pathologic condition, characterizing the risk of developing such a condition, and/or measuring the change (or no change) of a pathologic condition in response to therapy. Diagnostic methods may differ in their sensitivity and specificity. In certain embodiments, the "sensitivity" of a diagnostic assay refers to the percentage of diseased cells, 35 tissues or subjects which test positive (percent of "true positives"). Diseased cells, tissues or subjects not detected by the assay are typically referred to as "false negatives." Cells, tissues or subjects that are not diseased and which test negative in the assay may be termed "true negatives." In certain 40 embodiments, the "specificity" of a diagnostic assay may be defined as one (1) minus the false positive rate, where the "false positive" rate is defined as the proportion of those samples or subjects without the disease and which test positive. While a particular diagnostic method may not provide a 45 definitive diagnosis of a condition, it suffices if the method provides a positive indication that aids in diagnosis.

In certain instances, the presence or risk of developing a pathologic condition can be diagnosed by comparing the presence or levels of one or more selected AARS polynucle- 50 otide or polypeptide reference sequences or portions thereof that correlate with the condition, whether by increased or decreased levels, as compared to a suitable control. A "suitable control" or "appropriate control" includes a value, level, feature, characteristic, or property determined in a cell or 55 other biological sample of a tissue or organism, e.g., a control or normal cell, tissue or organism, exhibiting, for example, normal traits, such as the absence of the condition. In certain embodiments, a "suitable control" or "appropriate control" is a predefined value, level, feature, characteristic, or property. 60 Other suitable controls will be apparent to persons skilled in the art. Examples of diseases and conditions are described elsewhere herein.

Embodiments of the present invention include AARS polynucleotide or nucleic acid-based detection techniques, which 65 offer certain advantages due to sensitivity of detection. Hence, certain embodiments relate to the use or detection of 104

AARS polynucleotides as part of a diagnostic method or assay. The presence and/or levels of AARS polynucleotides may be measured by any method known in the art, including hybridization assays such as Northern blot, quantitative or qualitative polymerase chain reaction (PCR), quantitative or qualitative reverse transcriptase PCR (RT-PCR), microarray, dot or slot blots, or in situ hybridization such as fluorescent in situ hybridization (FISH), among others. Certain of these methods are described in greater detail below.

AARS polynucleotides such as DNA and RNA can be collected and/or generated from blood, biological fluids, tissues, organs, cell lines, or other relevant sample using techniques known in the art, such as those described in Kingston. (2002 Current Protocols in Molecular Biology, Greene Publ. Assoc. Inc. & John Wiley & Sons, Inc., NY, NY (see, e.g., as described by Nelson et al. Proc Natl Acad Sci USA, 99: 11890-11895, 2002) and elsewhere. Further, a variety of commercially available kits for constructing RNA are useful for making the RNA to be used in the present invention. RNA may be constructed from organs/tissues/cells procured from normal healthy subjects; however, this invention also contemplates construction of RNA from diseased subjects. Certain embodiments contemplate using any type of organ from any type of subject or animal. For test samples RNA may be procured from an individual (e.g., any animal, including mammals) with or without visible disease and from tissue samples, biological fluids (e.g., whole blood) or the like.

In certain embodiments, amplification or construction of cDNA sequences may be helpful to increase detection capabilities. The instant disclosure, as well as the art, provides the requisite level of detail to perform such tasks. In one exemplary embodiment, whole blood is used as the source of RNA and accordingly, RNA stabilizing reagents are optionally used, such as PAX tubes, as described, for example, in Thach et al., J. Immunol. Methods. December 283(1-2):269-279, 2003 and Chai et al., J. Clin. Lab Anal. 19(5):182-188, 2005 (both of which are incorporated by reference). Complementary DNA (cDNA) libraries can be generated using techniques known in the art, such as those described in Ausubel et al. (2001 Current Protocols in Molecular Biology, Greene Publ. Assoc. Inc. & John Wiley & Sons, Inc., NY, NY); Sambrook et al. (1989 Molecular Cloning, Second Ed., Cold Spring Harbor Laboratory, Plainview, N.Y.); Maniatis et al. (1982 Molecular Cloning, Cold Spring Harbor Laboratory, Plainview, N.Y.) and elsewhere. Further, a variety of commercially available kits for constructing cDNA libraries are useful for making the cDNA libraries of the present invention. Libraries can be constructed from organs/tissues/cells procured from normal, healthy subjects.

Certain embodiments may employ hybridization methods for detecting AARS polynucleotide sequences. Methods for conducting polynucleotide hybridization assays have been well developed in the art. Hybridization assay procedures and conditions will vary depending on the application and are selected in accordance with the general binding methods known including those referred to in: Maniatis et al. Molecular Cloning: A Laboratory Manual (2nd Ed. Cold Spring Harbor, N.Y., 1989); Berger and Kimmel Methods in Enzymology, Vol. 152, Guide to Molecular Cloning Techniques (Academic Press, Inc., San Diego, Calif., 1987); Young and Davis, PNAS. 80: 1194 (1983). Methods and apparatus for carrying out repeated and controlled hybridization reactions have been described in U.S. Pat. Nos. 5,871,928, 5,874,219, 6,045,996 and 6,386,749, 6,391,623 each of which are incorporated herein by reference

Certain embodiments may employ nucleic acid amplification methods for detecting AARS polynucleotide sequences.

The term "amplification" or "nucleic acid amplification" refers to the production of multiple copies of a target nucleic acid that contains at least a portion of the intended specific target nucleic acid sequence. The multiple copies may be referred to as amplicons or amplification products. In certain 5 embodiments, the amplified target contains less than the complete target gene sequence (introns and exons) or an expressed target gene sequence (spliced transcript of exons and flanking untranslated sequences). For example, specific amplicons may be produced by amplifying a portion of the 10 target polynucleotide by using amplification primers that hybridize to, and initiate polymerization from, internal positions of the target polynucleotide. Preferably, the amplified portion contains a detectable target sequence that may be detected using any of a variety of well-known methods.

"Selective amplification" or "specific amplification," as used herein, refers to the amplification of a target nucleic acid sequence according to the present invention wherein detectable amplification of the target sequence is substantially limited to amplification of target sequence contributed by a 20 nucleic acid sample of interest that is being tested and is not contributed by target nucleic acid sequence contributed by some other sample source, e.g., contamination present in reagents used during amplification reactions or in the environment in which amplification reactions are performed.

The term "amplification conditions" refers to conditions permitting nucleic acid amplification according to the present invention. Amplification conditions may, in some embodiments, be less stringent than "stringent hybridization conditions" as described herein. Oligonucleotides used in the amplification reactions of the present invention hybridize to their intended targets under amplification conditions, but may or may not hybridize under stringent hybridization conditions. On the other hand, detection probes of the present invention typically hybridize under stringent hybridization conditions. Acceptable conditions to carry out nucleic acid amplifications according to the present invention can be easily ascertained by someone having ordinary skill in the art depending on the particular method of amplification employed

Many well-known methods of nucleic acid amplification require thermocycling to alternately denature double-stranded nucleic acids and hybridize primers; however, other well-known methods of nucleic acid amplification are isothermal. The polymerase chain reaction (U.S. Pat. Nos. 45 4,683,195; 4,683,202; 4,800,159; 4,965,188), commonly referred to as PCR, uses multiple cycles of denaturation, annealing of primer pairs to opposite strands, and primer extension to exponentially increase copy numbers of the target sequence. In a variation called RT-PCR, reverse transcriptase (RT) is used to make a complementary DNA (cDNA) from mRNA, and the cDNA is then amplified by PCR to produce multiple copies of DNA.

As noted above, the term "PCR" refers to multiple amplification cycles that selectively amplify a target nucleic acid species. Included are quantitative PCR (qPCR), real-time PCR), reverse transcription PCR (RT-PCR) and quantitative reverse transcription PCR (qRT-PCR) is well described in the art. The term "pPCR" refers to quantitative polymerase chain reaction, and the term "qRT-PCR" refers to quantitative for reverse transcription polymerase chain reaction. qPCR and qRT-PCR may be used to amplify and simultaneously quantify a targeted cDNA molecule. It enables both detection and quantification of a specific sequence in a cDNA pool, such as a selected AARS gene or transcript.

The term "real-time PCR" may use DNA-binding dye to bind to all double-stranded (ds) DNA in PCR, causing fluo-

106

rescence of the dye. An increase in DNA product during PCR therefore leads to an increase in fluorescence intensity and is measured at each cycle, thus allowing DNA concentrations to be quantified. However, dsDNA dyes such as SYBR Green will bind to all dsDNA PCR products. Fluorescence is detected and measured in the real-time PCR thermocycler, and its geometric increase corresponding to exponential increase of the product is used to determine the threshold cycle ("Ct") in each reaction.

The term "Ct Score" refers to the threshold cycle number, which is the cycle at which PCR amplification has surpassed a threshold level. If there is a higher quantity of mRNA for a particular gene in a sample, it will cross the threshold earlier than a lowly expressed gene since there is more starting RNA to amplify. Therefore, a low Ct score indicates high gene expression in a sample and a high Ct score is indicative of low gene expression.

Certain embodiments may employ the ligase chain reaction (Weiss, *Science*. 254: 1292, 1991), commonly referred to as LCR, which uses two sets of complementary DNA oligonucleotides that hybridize to adjacent regions of the target nucleic acid. The DNA oligonucleotides are covalently linked by a DNA ligase in repeated cycles of thermal denaturation, hybridization and ligation to produce a detectable double-stranded ligated oligonucleotide product.

Another method is strand displacement amplification (Walker, G. et al., 1992, Proc. Natl. Acad. Sci. USA 89:392-396; U.S. Pat. Nos. 5,270,184 and 5,455,166), commonly referred to as SDA, which uses cycles of annealing pairs of primer sequences to opposite strands of a target sequence, primer extension in the presence of a dNTPaS to produce a duplex hemiphosphorothioated primer extension product, endonuclease-mediated nicking of a hemimodified restriction endonuclease recognition site, and polymerase-mediated primer extension from the 3' end of the nick to displace an existing strand and produce a strand for the next round of primer annealing, nicking and strand displacement, resulting in geometric amplification of product. Thermophilic SDA (tSDA) uses thermophilic endonucleases and polymerases at 40 higher temperatures in essentially the same method (European Pat. No. 0 684 315).

Other amplification methods include, for example: nucleic acid sequence based amplification (U.S. Pat. No. 5,130,238), commonly referred to as NASBA; one that uses an RNA replicase to amplify the probe molecule itself (Lizardi, P. et al., 1988, BioTechnol. 6:1197-1202), commonly referred to as Qβ replicase; a transcription based amplification method (Kwoh, D. et al., 1989, Proc. Natl. Acad. Sci. USA 86:1173-1177); self-sustained sequence replication (Guatelli, J. et al., 1990, Proc. Natl. Acad. Sci. USA 87:1874-1878); and, transcription mediated amplification (U.S. Pat. Nos. 5,480,784 and 5,399,491), commonly referred to as TMA. For further discussion of known amplification methods see Persing, David H., 1993, "In Vitro Nucleic Acid Amplification Techniques" in Diagnostic Medical Microbiology: Principles and Applications (Persing et al., Eds.), pp. 51-87 (American Society for Microbiology, Washington, D.C.).

Illustrative transcription-based amplification systems of the present invention include TMA, which employs an RNA polymerase to produce multiple RNA transcripts of a target region (U.S. Pat. Nos. 5,480,784 and 5,399,491). TMA uses a "promoter-primer" that hybridizes to a target nucleic acid in the presence of a reverse transcriptase and an RNA polymerase to form a double-stranded promoter from which the RNA polymerase produces RNA transcripts. These transcripts can become templates for further rounds of TMA in the presence of a second primer capable of hybridizing to the

RNA transcripts. Unlike PCR, LCR or other methods that require heat denaturation, TMA is an isothermal method that uses an RNase H activity to digest the RNA strand of an RNA:DNA hybrid, thereby making the DNA strand available for hybridization with a primer or promoter-primer. Generally, the RNase H activity associated with the reverse transcriptase provided for amplification is used.

In an illustrative TMA method, one amplification primer is an oligonucleotide promoter-primer that comprises a promoter sequence which becomes functional when doublestranded, located 5' of a target-binding sequence, which is capable of hybridizing to a binding site of a target RNA at a location 3' to the sequence to be amplified. A promoter-primer may be referred to as a "T7-primer" when it is specific for T7 RNA polymerase recognition. Under certain circumstances, 15 the 3' end of a promoter-primer, or a subpopulation of such promoter-primers, may be modified to block or reduce primer extension. From an unmodified promoter-primer, reverse transcriptase creates a cDNA copy of the target RNA, while RNase H activity degrades the target RNA. A second ampli- 20 fication primer then binds to the cDNA. This primer may be referred to as a "non-T7 primer" to distinguish it from a "T7-primer." From this second amplification primer, reverse transcriptase creates another DNA strand, resulting in a double-stranded DNA with a functional promoter at one end. 25 When double-stranded, the promoter sequence is capable of binding an RNA polymerase to begin transcription of the target sequence to which the promoter-primer is hybridized. An RNA polymerase uses this promoter sequence to produce multiple RNA transcripts (i.e., amplicons), generally about 30 100 to 1,000 copies. Each newly-synthesized amplicon can anneal with the second amplification primer. Reverse transcriptase can then create a DNA copy, while the RNase H activity degrades the RNA of this RNA:DNA duplex. The promoter-primer can then bind to the newly synthesized 35 DNA, allowing the reverse transcriptase to create a doublestranded DNA, from which the RNA polymerase produces multiple amplicons. Thus, a billion-fold isothermic amplification can be achieved using two amplification primers.

In certain embodiments, other techniques may be used to 40 evaluate RNA transcripts of the transcripts from a particular cDNA library, including microarray analysis (Han, M., et al., *Nat Biotechnol*, 19: 631-635, 2001; Bao, P., et al., *Anal Chem*, 74: 1792-1797, 2002; Schena et al., *Proc. Natl. Acad. Sci. USA* 93:10614-19, 1996; and Heller et al., *Proc. Natl. Acad.* 45 *Sci. USA* 94:2150-55, 1997) and SAGE (serial analysis of gene expression). Like MPSS, SAGE is digital and can generate a large number of signature sequences. (see e.g., Velculescu, V. E., et al., *Trends Genet*, 16: 423-425., 2000; Tuteja R. and Tuteja N. *Bioessays*. 2004 August; 26(8):916-22), 50 although orders of magnitude fewer than that are available from techniques such as MPSS.

In certain embodiments, the term "microarray" includes a "nucleic acid microarray" having a substrate-bound plurality of nucleic acids, hybridization to each of the plurality of 55 bound nucleic acids being separately detectable. The substrate can be solid or porous, planar or non-planar, unitary or distributed. Nucleic acid microarrays include all the devices so called in Schena (ed.), DNA Microarrays: A Practical Approach (Practical Approach Series), Oxford University 60 Press (1999); Nature Genet. 21(1) (suppl.): 1-60 (1999); Schena (ed.), Microarray Biochip: Tools and Technology, Eaton Publishing Company/BioTechniques Books Division (2000). Nucleic acid microarrays may include a substrate-bound plurality of nucleic acids in which the plurality of nucleic acids are disposed on a plurality of beads, rather than on a unitary planar substrate, as described, for example, in

108

Brenner et al., *Proc. Natl. Acad. Sci. USA* 97(4): 1665-1670 (2000). Examples of nucleic acid microarrays may be found in U.S. Pat. Nos. 6,391,623, 6,383,754, 6,383,749, 6,380,377, 6,379,897, 6,376,191, 6,372,431, 6,351,712 6,344,316, 6,316,193, 6,312,906, 6,309,828, 6,309,824, 6,306,643, 6,300,063, 6,287,850, 6,284,497, 6,284,465, 6,280,954, 6,262,216, 6,251,601, 6,245,518, 6,263,287, 6,251,601, 6,238,866, 6,228,575, 6,214,587, 6,203,989, 6,171,797, 6,103,474, 6,083,726, 6,054,274, 6,040,138, 6,083,726, 6,004,755, 6,001,309, 5,958,342, 5,952,180, 5,936,731, 5,843,655, 5,814,454, 5,837,196, 5,436,327, 5,412,087, and 5,405,783, the disclosures of which are incorporated by reference.

Additional examples include nucleic acid arrays that are commercially available from Affymetrix (Santa Clara, Calif.) under the brand name GENECHIPTM Further exemplary methods of manufacturing and using arrays are provided in, for example, U.S. Pat. Nos. 7,028,629; 7,011,949; 7,011,945; 6,936,419; 6,927,032; 6,924,103; 6,921,642; and 6,818,394.

The present invention as related to arrays and microarrays also contemplates many uses for polymers attached to solid substrates. These uses include gene expression monitoring, profiling, library screening, genotyping and diagnostics. Gene expression monitoring and profiling methods and methods useful for gene expression monitoring and profiling are shown in U.S. Pat. Nos. 5,800,992, 6,013,449, 6,020,135, 6,033,860, 6,040,138, 6,177,248 and 6,309,822. Genotyping and uses therefore are shown in U.S. Ser. Nos. 10/442,021, 10/013,598 (U.S. Application No. 2003/0036069), and U.S. Pat. Nos. 5,925,525, 6,268,141, 5,856,092, 6,267,152, 6,300, 063, 6,525,185, 6,632,611, 5,858,659, 6,284,460, 6,361,947, 6,368,799, 6,673,579 and 6,333,179. Other methods of nucleic acid amplification, labeling and analysis that may be used in combination with the methods disclosed herein are embodied in U.S. Pat. Nos. 5,871,928, 5,902,723, 6,045,996, 5,541,061, and 6,197,506.

As will be apparent to persons skilled in the art, certain embodiments may employ oligonucleotides, such as primers or probes, for amplification or detection, as described herein. Oligonucleotides of a defined sequence and chemical structure may be produced by techniques known to those of ordinary skill in the art, such as by chemical or biochemical synthesis, and by in vitro or in vivo expression from recombinant nucleic acid molecules, e.g., bacterial or viral vectors. In certain embodiments, an oligonucleotide does not consist solely of wild-type chromosomal DNA or the in vivo transcription products thereof.

Oligonucleotides or primers may be modified in any way, as long as a given modification is compatible with the desired function of a given oligonucleotide. One of ordinary skill in the art can easily determine whether a given modification is suitable or desired for any given oligonucleotide of the present invention. Relevant AARS oligonucleotides are described in greater detail elsewhere herein.

While the design and sequence of oligonucleotides depends on their function as described herein, several variables are generally taken into account. Among the most relevant are: length, melting temperature (Tm), specificity, complementarity with other oligonucleotides in the system, G/C content, polypyrimidine (T, C) or polypurine (A, G) stretches, and the 3'-end sequence. Controlling for these and other variables is a standard and well known aspect of oligonucleotide design, and various computer programs are readily available to screen large numbers of potential oligonucleotides for optimal ones.

Certain embodiments therefore include methods for detecting a target AARS polynucleotide in a sample, the

polynucleotide comprising the sequence of a reference AARS polynucleotide, as described herein, comprising a) hybridizing the sample with a probe comprising a sequence complementary to the target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. Also included are methods for detecting a target AARS polynucleotide in a sample, the polynucleotide comprising the sequence of a reference AARS polynucleotide, as described herein, comprising a) amplifying the target polynucleotide or fragment thereof, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof. Specific embodiments relate to the detection of AARS splice variants, such as by detecting a unique splice junction of the splice variant, whether by hybridization, 20 amplification, or other detection method.

Embodiments of the present invention include a variety of AARS polypeptide-based detection techniques, including antibody-based detection techniques. Included in these embodiments are the use of AARS polypeptides to generate 25 antibodies or other binders, which may then be used in diagnostic methods and compositions to detect or quantitate selected AARS polypeptides in a cell or other biological sample, typically from a subject.

Certain embodiments may employ standard methodologies and detectors such as western blotting and immunoprecipitation, enzyme-linked immunosorbent assays (ELISA), flow cytometry, and immunofluorescence assays (IFA), which utilize an imaging device. These well-known methods typically utilize one or more monoclonal or polyclonal antibodies as described herein that specifically bind to a selected AARS polypeptide of the invention, or a unique region of that AARS polypeptide, and generally do not bind significantly to other AARS polypeptides, such as a full-length AARS polypeptide. In certain embodiments, the unique region of the AARS polypeptide may represent a unique three-dimensional structure that is possessed by a newly identified protein fragment of an AARS.

Certain embodiments may employ "arrays," such as "microarrays." In certain embodiments, a "microarray" may 45 also refer to a "peptide microarray" or "protein microarray" having a substrate-bound collection or plurality of polypeptides, the binding to each of the plurality of bound polypeptides being separately detectable. Alternatively, the peptide microarray may have a plurality of binders, including but not 50 limited to monoclonal antibodies, polyclonal antibodies, phage display binders, yeast 2 hybrid binders, and aptamers, which can specifically detect the binding of the AARS polypeptides described herein. The array may be based on autoantibody detection of these AARS polypeptides, as 55 described, for example, in Robinson et al., Nature Medicine 8(3):295-301 (2002). Examples of peptide arrays may be found in WO 02/31463, WO 02/25288, WO 01/94946, WO 01/88162, WO 01/68671, WO 01/57259, WO 00/61806, WO 00/54046, WO 00/47774, WO 99/40434, WO 99/39210, and 60 WO 97/42507 and U.S. Pat. Nos. 6,268,210, 5,766,960, and 5,143,854, each of which are incorporated by reference.

Certain embodiments may employ MS or other molecular weight-based methods for diagnostically detecting AARS polypeptide sequences. Mass spectrometry (MS) refers generally to an analytical technique for determining the elemental composition of a sample or molecule. MS may also be

110

used for determining the chemical structures of molecules, such as peptides and other chemical compounds.

Generally, the MS principle consists of ionizing chemical compounds to generate charged molecules or molecule fragments, and then measuring their mass-to-charge ratios. In an illustrative MS procedure: a sample is loaded onto the MS instrument, and undergoes vaporization, the components of the sample are ionized by one of a variety of methods (e.g., by impacting them with an electron beam), which results in the formation of positively charged particles, the positive ions are then accelerated by a magnetic field, computations are performed on the mass-to-charge ratio (m/z) of the particles based on the details of motion of the ions as they transit through electromagnetic fields, and, detection of the ions, which in step prior were sorted according to m/z.

An illustrative MS instruments has three modules: an ion source, which converts gas phase sample molecules into ions (or, in the case of electrospray ionization, move ions that exist in solution into the gas phase); a mass analyzer, which sorts the ions by their masses by applying electromagnetic fields; and a detector, which measures the value of an indicator quantity and thus provides data for calculating the abundances of each ion present.

The MS technique has both qualitative and quantitative uses, including identifying unknown compounds, determining the isotopic composition of elements in a molecule, and determining the structure of a compound by observing its fragmentation. Other uses include quantifying the amount of a compound in a sample or studying the fundamentals of gas phase ion chemistry (the chemistry of ions and neutrals in a vacuum). Included are gas chromatography-mass spectrometry (GC/MS or GC-MS), liquid chromatography mass spectrometry (LC/MS or LC-MS), and ion mobility spectrometry/ mass spectrometry (IMS/MS or IMMS). Accordingly, MS techniques may be used according to any of the methods provided herein to measure the presence or levels of an AARS polypeptide of the invention in a biological sample, and to compare those levels to a control sample or a pre-determined value.

Certain embodiments may employ cell-sorting or cell visualization or imaging devices/techniques to detect or quantitate the presence or levels of AARS polynucleotides or polypeptides. Examples include flow cytometry or FACS, immunofluorescence analysis (IFA), and in situ hybridization techniques, such as fluorescent in situ hybridization (FISH).

Certain embodiments may employ conventional biology methods, software and systems for diagnostic purposes. Computer software products of the invention typically include computer readable medium having computer-executable instructions for performing the logic steps of the method of the invention. Suitable computer readable medium include floppy disk, CD-ROM/DVD/DVD-ROM, hard-disk drive, flash memory, ROM/RAM, magnetic tapes and etc. The computer executable instructions may be written in a suitable computer language or combination of several languages. Basic computational biology methods are described in, for example Setubal and Meidanis et al., Introduction to Computational Biology Methods (PWS Publishing Company, Boston, 1997); Salzberg, Searles, Kasif, (Ed.), Computational Methods in Molecular Biology, (Elsevier, Amsterdam, 1998); Rashidi and Buehler, Bioinformatics Basics: Application in Biological Science and Medicine (CRC Press, London, 2000) and Ouelette and Bzevanis Bioinformatics: A Practical Guide for Analysis of Gene and Proteins (Wiley & Sons, Inc., 2nd ed., 2001). See U.S. Pat. No. 6,420,108.

Certain embodiments may employ various computer program products and software for a variety of purposes, such as

probe design, management of data, analysis, and instrument operation. See, U.S. Pat. Nos. 5,593,839, 5,795,716, 5,733, 729, 5,974,164, 6,066,454, 6,090,555, 6,185,561, 6,188,783, 6,223,127, 6,229,911 and 6,308,170.

The whole genome sampling assay (WGSA) is described, 5 for example in Kennedy et al., Nat. Biotech. 21, 1233-1237 (2003), Matsuzaki et al., Gen. Res. 14: 414-425, (2004), and Matsuzaki, et al., Nature Methods 1:109-111 (2004). Algorithms for use with mapping assays are described, for example, in Liu et al., *Bioinformatics*. 19: 2397-2403 (2003) 10 and Di et al. Bioinformatics. 21:1958 (2005). Additional methods related to WGSA and arrays useful for WGSA and applications of WGSA are disclosed, for example, in U.S. Patent Application Nos. 60/676,058 filed Apr. 29, 2005, 60/616,273 filed Oct. 5, 2004, Ser. Nos. 10/912,445, 11/044, 15 831, 10/442,021, 10/650,332 and 10/463,991. Genome wide association studies using mapping assays are described in, for example, Hu et al., Cancer Res.; 65(7):2542-6 (2005), Mitra et al., Cancer Res., 64(21):8116-25 (2004), Butcher et al., Hum Mol Genet., 14(10):1315-25 (2005), and Klein et al., 20 Science. 308(5720):385-9 (2005).

Additionally, certain embodiments may include methods for providing genetic information over networks such as the Internet as shown, for example, in U.S. application Ser. Nos. 10/197,621, 10/063,559 (United States Publication Number 25 2002/0183936), Ser. Nos. 10/065,856, 10/065,868, 10/328, 818, 10/328,872, 10/423,403, and 60/482,389.

X. Antisense and RNAi Agents

Embodiments of the present invention also include antisense oligonucleotides and RNAi agents that target the AARS polynucleotide sequences, and methods of use thereof to reduce expression of a selected AARS transcript and/or protein fragment. Certain embodiments relate to targeting one or 35 more splice junctions (often unique) that generate a splice variant, AARS protein fragment of instant invention. Also included are methods of antisense or RNAi inhibition that target certain splice forms, either to encourage or discourage splicing of a selected protein fragment. In certain preferred 40 embodiments, the splice junctions that generate the AARS protein fragments are over-expressed with respect to particular tissues, and are unique to that splice variant. In these and related embodiments, such splice variants are not the only source of cytosolic AARS activity in the targeted cell type. 45 For instance, certain splice variants to be targeted may represent about 10% to 50% of the total copy number of the AARS RNA splice variants in a given cell or tissue, and preferably about 1-10% of the total copy number of the AARS RNA splice variants in a given cell or tissue. Splice variants that are 50 about <1% of the total copy number of the AARS RNA splice variants in a given cell or tissue may also be targeted.

In certain embodiments, the antisense or RNAi agent does not target the full-length protein, because such full-length proteins are responsible for a key step in protein synthesis, 55 and thereby avoids lethality that often results from wild-type AARS knockouts. Certain of the methods described herein can therefore by used to avoid undesired effects such as toxicities in both chronic and acute treatments, and to selectively modulate the non-canonical activities of the AARS oprotein fragment. However, certain embodiments may generically target AARS sequences, including full-length AARS sequences, such as to kill or substantially derange the cell physiology of a target cell or tissue.

In certain embodiments, the AARS splice variant to be 65 targeted possesses a non-canonical biological activity. In some embodiments, the AARS splice variant has reduced or

112

undetectable canonical AARS activity, and the antisense or RNAi-related method more specifically modulates its non-canonical activity. In certain embodiments, the antisense or RNAi-related agents can be combined with a targeted or local delivery approach to lessen systemic undesired effects to non-targeted cells or tissues. Among others described herein, exemplary cells or tissues that could be targeted this way include cancer cells, and cells to tissues that lend themselves to localized targeting, such as tumors or epithelia via topical application.

A. Antisense Agents

The terms "antisense oligomer" or "antisense compound" or "antisense oligonucleotide" are used interchangeably and refer to a sequence of cyclic subunits, each bearing a basepairing moiety, linked by intersubunit linkages that allow the base-pairing moieties to hybridize to a target sequence in a nucleic acid (typically an RNA) by Watson-Crick base pairing, to form a nucleic acid:oligomer heteroduplex within the target sequence, and typically thereby prevent translation of that RNA. Also included are methods of use thereof to modulate expression of a selected AARS transcript, such as a splice variant or proteolytic fragment, and/or its corresponding polyeptide.

Antisense oligonucleotides may contain between about 8 and 40 subunits, typically about 8-25 subunits, and preferably about 12 to 25 subunits. In certain embodiments, oligonucleotides may have exact sequence complementarity to the target sequence or near complementarity, as defined below. In certain embodiments, the degree of complementarity between the target and antisense targeting sequence is sufficient to form a stable duplex. The region of complementarity of the antisense oligomers with the target RNA sequence may be as short as 8-11 bases, but is preferably 12-15 bases or more, e.g., 12-20 bases, or 12-25 bases, including all integers in between these ranges. An antisense oligomer of about 14-15 bases is generally long enough to have a unique complementary sequence in targeting the selected AARS gene. In certain embodiments, a minimum length of complementary bases may be required to achieve the requisite binding Tm, as discussed herein.

In certain embodiments, antisense oligomers as long as 40 bases may be suitable, where at least a minimum number of bases, e.g., 10-12 bases, are complementary to the target sequence. In general, however, facilitated or active uptake in cells is optimized at oligomer lengths less than about 30. For certain oligomers, described further below, an optimum balance of binding stability and uptake generally occurs at lengths of 18-25 bases. Included are antisense oligomers (e.g., PNAs, LNAs, 2'-OMe, MOE) that consist of about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 bases, in which at least about 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 contiguous or non-contiguous bases are complementary to their AARS target sequence, or variants thereof.

In certain embodiments, antisense oligomers may be 100% complementary to an AARS nucleic acid target sequence, or it may include mismatches, e.g., to accommodate variants, as long as a heteroduplex formed between the oligomer and AARS nucleic acid target sequence is sufficiently stable to withstand the action of cellular nucleases and other modes of degradation which may occur in vivo. The term "target sequence" refers to a portion of the target RNA against which the oligonucleotide is directed, that is, the sequence to which the oligonucleotide will hybridize by Watson-Crick base pairing of a complementary sequence. In certain embodiments,

the target sequence may be a contiguous region of an AARS mRNA (e.g., a unique splice junction of an AARS mRNA), or may be composed of non-contiguous regions of the mRNA.

Oligomer backbones which are less susceptible to cleavage by nucleases are discussed below. Mismatches, if present, are less destabilizing toward the end regions of the hybrid duplex than in the middle. The number of mismatches allowed will depend on the length of the oligomer, the percentage of G:C base pairs in the duplex, and the position of the mismatch(es) in the duplex, according to well understood principles of duplex stability. Although such an antisense oligomer is not necessarily 100% complementary to the AARS nucleic acid target sequence, it is effective to stably and specifically bind to the target sequence, such that a biological activity of the nucleic acid target, e.g., expression of AARS protein(s), is modulated.

The stability of the duplex formed between an oligomer and a target sequence is a function of the binding Tm and the susceptibility of the duplex to cellular enzymatic cleavage. 20 The Tm of an antisense oligonucleotide with respect to complementary-sequence RNA may be measured by conventional methods, such as those described by Hames et al., Nucleic Acid Hybridization, IRL Press, 1985, pp. 107-108 or as described in Miyada C. G. and Wallace R. B., 1987, Oli- 25 gonucleotide hybridization techniques, Methods Enzymol. Vol. 154 pp. 94-107. In certain embodiments, antisense oligomer may have a binding Tm, with respect to a complementary-sequence RNA, of greater than body temperature and preferably greater than 50° C. Tm's in the range 60-80° C. or 30 greater are preferred. According to well known principles, the Tm of an oligomer compound, with respect to a complementary-based RNA hybrid, can be increased by increasing the ratio of C:G paired bases in the duplex, and/or by increasing the length (in base pairs) of the heteroduplex. At the same 35 time, for purposes of optimizing cellular uptake, it may be advantageous to limit the size of the antisense oligomer. For this reason, compounds that show high Tm (50° C. or greater) at a length of 25 bases or less are generally preferred over those requiring greater than 25 bases for high Tm values.

Antisense oligomers can be designed to block or inhibit translation of mRNA or to inhibit natural pre-mRNA splice processing, or induce degradation of targeted mRNAs, and may be said to be "directed to" or "targeted against" a target sequence with which it hybridizes. In certain embodiments, 45 the target sequence may include any coding or non-coding sequence of an AARS mRNA transcript, and may thus by within an exon or within an intron. In certain embodiments, the target sequence is relatively unique or exceptional among AARSs (e.g., a full-length AARS) and is selective for reduc- 50 ing expression of a selected AARS protein fragment, such as a proteolytic fragment or splice variant. In certain embodiments, the target site includes a 3' or 5' splice site of a preprocessed mRNA, or a branch point. The target sequence for a splice site may include an mRNA sequence having its 5' end 55 1 to about 25 to about 50 base pairs downstream of a splice acceptor junction or upstream of a splice donor junction in a preprocessed mRNA. In certain embodiments, a target sequence may include a splice junction of an alternatively splice AARS mRNA, such as a splice junction that does not 60 occur in the full-length AARS, or is unique or exceptional to that transcript, in that it either does not occur or only seldom occurs in other AARS splice variants. An oligomer is more generally said to be "targeted against" a biologically relevant target, such as reference AARS polynucleotide, when it is targeted against the nucleic acid of the target in the manner described herein.

114

An oligonucleotide is typically complementary to a target sequence, such as a target DNA or RNA. The terms "complementary" and "complementarity" refer to polynucleotides (i.e., a sequence of nucleotides) related by the base-pairing rules. For example, the sequence "A-G-T," is complementary to the sequence "T-C-A." Complementarity may be "partial," in which only some of the nucleic acids' bases are matched according to the base pairing rules. Or, there may be "complete" or "total" complementarity (100%) between the nucleic acids. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. While perfect complementarity is often desired, some embodiments can include one or more but preferably 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 mismatches with respect to the target sequence. Variations at any location within the oligomer are included. In certain embodiments, variations in sequence near the termini of an oligomer are generally preferable to variations in the interior, and if present are typically within about 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 nucleotides of the 5' and/or 3' terminus.

The term "targeting sequence" or in certain embodiments "antisense targeting sequence" refers to the sequence in an oligonucleotide that is complementary (meaning, in addition, substantially complementary) to the target sequence in the DNA or RNA target molecule. The entire sequence, or only a portion, of the antisense compound may be complementary to the target sequence. For example, in an oligonucleotide having 20-30 bases, about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, or 29 may be targeting sequences that are complementary to the target region. Typically, the targeting sequence is formed of contiguous bases, but may alternatively be formed of non-contiguous sequences that when placed together, e.g., from opposite ends of the oligonucleotide, constitute sequence that spans the target sequence.

Target and targeting sequences are described as "complementary" to one another when hybridization occurs in an antiparallel configuration. A targeting sequence may have "near" or "substantial" complementarity to the target sequence and still function for the purpose of the present invention, that is, it may still be functionally "complementary." In certain embodiments, an oligonucleotide may have at most one mismatch with the target sequence out of 10 nucleotides, and preferably at most one mismatch out of 20. Alternatively, an oligonucleotide may have at least about 80%, 85%, 90% sequence homology, and preferably at least 95% sequence homology, with an AARS reference polynucleotide sequence described herein, or its complement.

An oligonucleotide "specifically hybridizes" to a target polynucleotide if the oligomer hybridizes to a target (e.g., an AARS reference polynucleotide or its complement) under physiological conditions, with a Tm substantially greater than 45° C., preferably at least 50° C., and typically 60° C.-80° C. or higher. Such hybridization preferably corresponds to stringent hybridization conditions. At a given ionic strength and pH, the Tm is the temperature at which 50% of a target sequence hybridizes to a complementary polynucleotide. Again, such hybridization may occur with "near" or "substantial" complementarity of the antisense oligomer to the target sequence, as well as with exact complementarity.

The terms specifically binds or specifically hybridizes refer generally to an oligonucleotide probe or polynucleotide sequence that not only binds to its intended target gene sequence in a sample under selected hybridization conditions, but does not bind significantly to other target sequences in the sample, and thereby discriminates between its intended

target and all other targets in the target pool. A probe that specifically hybridizes to its intended target sequence may also detect concentration differences under the selected hybridization conditions, as described herein.

A "nuclease-resistant" oligomeric molecule (oligomer) 5 refers to one whose backbone is substantially resistant to nuclease cleavage, in non-hybridized or hybridized form; by common extracellular and intracellular nucleases in the body; that is, the oligomer shows little or no nuclease cleavage under normal nuclease conditions in the body to which the 10 oligomer is exposed.

A "heteroduplex" refers to a duplex between an oligonucleotide and the complementary portion of a target polynucleotide, such as a target DNA or RNA. A "nucleaseresistant heteroduplex" refers to a heteroduplex formed by the 1 binding of an oligomer to its complementary target, such that the heteroduplex is substantially resistant to in vivo degradation by intracellular and extracellular nucleases, such as RNaseH, which are capable of cutting double-stranded RNA/ RNA or RNA/DNA complexes.

A "subunit" of an oligonucleotide refers to one nucleotide (or nucleotide analog) unit. The term may refer to the nucleotide unit with or without the attached intersubunit linkage, although, when referring to a "charged subunit", the charge typically resides within the intersubunit linkage (e.g., a phos- 25 phate or phosphorothioate linkage or a cationic linkage).

The cyclic subunits of an oligonucleotide may be based on ribose or another pentose sugar or, in certain embodiments, alternate or modified groups. Examples of modified oligonucleotide backbones include, without limitation, phospho- 30 rothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphos- 35 phoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent Also contemplated are peptide nucleic acids (PNAs), locked nucleic acids (LNAs), 2'-O-Methyl oligonucleotides (2'-OMe), 2'-methoxyethoxy oligonucleotides among other oligonucleotides known in the art.

The purine or pyrimidine base pairing moiety is typically 45 adenine, cytosine, guanine, uracil, thymine or inosine. Also included are bases such as pyridin-4-one, pyridin-2-one, phenyl, pseudouracil, 2,4,6-trime115thoxy benzene, 3-methyl uracil, dihydrouridine, naphthyl, aminophenyl, 5-alkylcytidines (e.g., 5-methylcytidine), 5-alkyluridines (e.g., 50 ribothymidine), 5-halouridine (e.g., 5-bromouridine) or 6-azapyrimidines or 6-alkylpyrimidines (e.g., 6-methyluridine), propyne, quesosine, 2-thiouridine, 4-thiouridine, wybutosine, wybutoxosine, 4-acetyltidine, 5-(carboxyhydroxymethyl)uridine, 5'-carboxymethylaminomethyl-2- 55 thiouridine, 5-carboxymethylaminomethyluridine, β-D-galactosylqueosine, 1-methyladenosine, 1-methylinosine, 2,2dimethylguanosine, 3-methylcytidine, 2-methyladenosine, 2-methylguanosine, N6-methyladenosine, 7-methylguanosine, 5-methoxyaminomethyl-2-thiouridine, 5-methy- 60 laminomethyluridine, 5-methylcarbonyhnethyluridine, 5-methyloxyuridine, 5-methyl-2-thiouridine, 2-methylthio-N6-isopentenyladenosine, 3-D-mannosylqueosine, uridine-5-oxyacetic acid, 2-thiocytidine, threonine derivatives and others (Burgin et al., 1996, Biochemistry, 35, 14090; Uhlman 65 & Peyman, supra). By "modified bases" in this aspect is meant nucleotide bases other than adenine (A), guanine (G),

116

cytosine (C), thymine (T), and uracil (U), as illustrated above; such bases can be used at any position in the antisense molecule. Persons skilled in the art will appreciate that depending on the uses of the oligomers, Ts and Us are interchangeable. For instance, with other antisense chemistries such as 2'-Omethyl antisense oligonucleotides that are more RNA-like. the T bases may be shown as U.

As noted above, certain oligonucleotides provided herein include peptide nucleic acids (PNAs). Peptide nucleic acids (PNAs) are analogs of DNA in which the backbone is structurally homomorphous with a deoxyribose backbone, consisting of N-(2-aminoethyl) glycine units to which pyrimidine or purine bases are attached. PNAs containing natural pyrimidine and purine bases hybridize to complementary oligonucleotides obeying Watson-Crick base-pairing rules, and mimic DNA in terms of base pair recognition (Egholm, Buchardt et al. 1993). The backbone of PNAs is formed by peptide bonds rather than phosphodiester bonds, making them well-suited for antisense applications (see structure below). The backbone is uncharged, resulting in PNA/DNA or PNA/RNA duplexes that exhibit greater than normal thermal stability. PNAs are not recognized by nucleases or proteases.

PNAs may be produced synthetically using any technique known in the art. PNA is a DNA analog in which a polyamide backbone replaces the traditional phosphate ribose ring of DNA. Despite a radical structural change to the natural structure, PNA is capable of sequence-specific binding in a helix form to DNA or RNA. Characteristics of PNA include a high binding affinity to complementary DNA or RNA, a destabilizing effect caused by single-base mismatch, resistance to nucleases and proteases, hybridization with DNA or RNA independent of salt concentration and triplex formation with homopurine DNA. PanageneTM has developed its proprietary Bts PNA monomers (Bts; benzothiazole-2-sulfonyl group) and proprietary oligomerisation process. The PNA oligomerisation using Bts PNA monomers is composed of repetitive pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. 40 cycles of deprotection, coupling and capping. Panagene's patents to this technology include U.S. Pat. No. 6,969,766, U.S. Pat. No. 7,211,668, U.S. Pat. No. 7,022,851, U.S. Pat. No. 7,125,994, U.S. Pat. No. 7,145,006 and U.S. Pat. No. 7,179,896. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497.

Also included are "locked nucleic acid" subunits (LNAs). The structures of LNAs are known in the art: for example, Wengel, et al., Chemical Communications (1998) 455; Tetrahedron (1998) 54, 3607, and Accounts of Chem. Research (1999) 32, 301); Obika, et al., Tetrahedron Letters (1997) 38, 8735; (1998) 39, 5401, and Bioorganic Medicinal Chemistry (2008) 16, 9230.

Oligonucleotides may incorporate one or more LNAs; in some cases, the compounds may be entirely composed of LNAs. Methods for the synthesis of individual LNA nucleoside subunits and their incorporation into oligonucleotides are known in the art: U.S. Pat. Nos. 7,572,582; 7,569,575; 7,084,125; 7,060,809; 7,053,207; 7,034,133; 6,794,499; and 6,670,461. Typical intersubunit linkers include phosphodiester and phosphorothioate moieties; alternatively, non-phosphorous containing linkers may be employed. A preferred embodiment is an LNA containing compound where each LNA subunit is separated by a DNA subunit (i.e., a deoxyri-

bose nucleotide). Further preferred compounds are composed of alternating LNA and DNA subunits where the intersubunit linker is phosphorothioate.

Certain oligonucleotides may comprise morpholino-based subunits bearing base-pairing moieties, joined by uncharged 5 or substantially uncharged linkages. The terms "morpholino oligomer" or "PMO" (phosphoramidate- or phosphorodiamidate morpholino oligomer) refer to an oligonucleotide analog composed of morpholino subunit structures, where (i) the structures are linked together by phosphorus-containing linkages, one to three atoms long, preferably two atoms long, and preferably uncharged or cationic, joining the morpholino nitrogen of one subunit to a 5' exocyclic carbon of an adjacent subunit, and (ii) each morpholino ring bears a purine or pyrimidine or an equivalent base-pairing moiety effective to bind, 15 by base specific hydrogen bonding, to a base in a polynucle-

Variations can be made to this linkage as long as they do not interfere with binding or activity. For example, the oxygen attached to phosphorus may be substituted with sulfur (thio- 20 phosphorodiamidate). The 5' oxygen may be substituted with amino or lower alkyl substituted amino. The pendant nitrogen attached to phosphorus may be unsubstituted, monosubstituted, or disubstituted with (optionally substituted) lower alkyl. The purine or pyrimidine base pairing moiety is typi- 25 agents that target one or more mRNA transcripts of an amically adenine, cytosine, guanine, uracil, thymine or inosine. The synthesis, structures, and binding characteristics of morpholino oligomers are detailed in U.S. Pat. Nos. 5,698,685, 5,217,866, 5,142,047, 5,034,506, 5,166,315, 5,521,063, and 5,506,337, and PCT Appn. Nos. PCT/US07/11435 (cationic 30 linkages) and U.S. Ser. No. 08/012,804 (improved synthesis), all of which are incorporated herein by reference.

The morpholino subunits may also be linked by non-phosphorus-based intersubunit linkages, as described further below, where at least one linkage is modified with a pendant 35 cationic group as described above. Other oligonucleotide analog linkages which are uncharged in their unmodified state but which could also bear a pendant amine substituent could be used. For example, a 5'nitrogen atom on a morpholino ring could be employed in a sulfamide linkage or a 40 urea linkage (where phosphorus is replaced with carbon or sulfur, respectively) and modified in a manner analogous to the 5'-nitrogen atom in structure (b3) above.

Certain embodiments include substantially uncharged morpholino oligomers, such as a substantially uncharged 45 phosphorodiamidate-linked morpholino oligomer. A substantially uncharged, phosphorus containing backbone in an oligonucleotide analog is one in which a majority of the subunit linkages, e.g., between 50-100%, typically at least 60% to 100% or 75% or 80% of its linkages, are uncharged at 50 physiological pH, and contain a single phosphorous atom. Examples of morpholino oligonucleotides having phosphorus-containing backbone linkages include phosphoroamidate and phosphorodiamidate-linked morpholino oligonucleotides. Certain embodiments may contain positively charged 55 groups at preferably about 10%-50% of their backbone link-

Properties of the morpholino-based subunits include, for example, the ability to be linked in a oligomeric form by stable, uncharged or positively charged backbone linkages, 60 the ability to support a nucleotide base (e.g., adenine, cytosine, guanine, thymidine, uracil and hypoxanthine) such that the polymer formed can hybridize with a complementary-base target nucleic acid, including target RNA, Tm values above about 45° C. in relatively short oligonucleotides 65 (e.g., 10-15 bases), the ability of the oligonucleotide to be actively or passively transported into mammalian cells, and

118

the ability of the antisense oligonucleotide:RNA heteroduplex to resist RNase and RNaseH degradation, respectively.

In certain embodiments, a substantially uncharged oligonucleotide may be modified to include charged linkages, e.g., up to about 1 per every 2-5 uncharged linkages, such as about 4-5 per every 10 uncharged linkages. In certain embodiments, optimal improvement in antisense activity may be seen when about 25% of the backbone linkages are cationic. In certain embodiments, enhancement may be seen with a small number e.g., 10-20% cationic linkages, or where the number of cationic linkages are in the range 50-80%, such as about 60%. In certain embodiments the cationic backbone charges may be further enhanced by distributing the bulk of the charges close of the "center-region" backbone linkages of the antisense oligonucleotide, e.g., in a 20-mer oligonucleotide with 8 cationic backbone linkages, having at least 70% of these charged linkages localized in the 10 centermost linkages.

Oligonucleotides that target one or more portions of an AARS polynucleotide reference sequence or its complement may be used in any of the therapeutic, diagnostic, or drug screening methods described herein and apparent to persons skilled in the art.

B. RNA Interference Agents

Certain embodiments relate to RNA interference (RNAi) noacyl-tRNA synthetase (AARS) reference polynucleotide, including fragments and splice variants thereof. Also included are methods of use thereof to modulate the levels of a selected AARS transcript, such as an AARS splice variant or endogenous proteolytic fragment.

The term "double-stranded" means two separate nucleic acid strands comprising a region in which at least a portion of the strands are sufficiently complementary to hydrogen bond and form a duplex structure. The term "duplex" or "duplex structure" refers to the region of a double stranded molecule wherein the two separate strands are substantially complementary, and thus hybridize to each other. "dsRNA" refers to a ribonucleic acid molecule having a duplex structure comprising two complementary and anti-parallel nucleic acid strands (i.e., the sense and antisense strands). Not all nucleotides of a dsRNA must exhibit Watson-Crick base pairs; the two RNA strands may be substantially complementary. The RNA strands may have the same or a different number of nucleotides.

In certain embodiments, a dsRNA is or includes a region which is at least partially complementary to the target RNA. In certain embodiments, the dsRNA is fully complementary to the target RNA. It is not necessary that there be perfect complementarity between the dsRNA and the target, but the correspondence must be sufficient to enable the dsRNA, or a cleavage product thereof, to direct sequence specific silencing, such as by RNAi cleavage of the target RNA. Complementarity, or degree of homology with the target strand, is typically most critical in the antisense strand. While perfect complementarity, particularly in the antisense strand, is often desired some embodiments can include one or more but preferably 6, 5, 4, 3, 2, or fewer mismatches with respect to the target RNA. The mismatches are most tolerated in the terminal regions, and if present are preferably in a terminal region or regions, e.g., within 6, 5, 4, or 3 nucleotides of the 5' and/or 3' terminus. The sense strand need only be substantially complementary with the antisense strand to maintain the overall double-strand character of the molecule.

As used herein, "modified dsRNA" refers to a dsRNA molecule that comprises at least one alteration that renders it more resistant to nucleases (e.g., protein kinase) than an identical dsRNA molecule that recognizes the same target

RNA. Modified dsRNAs may include a single-stranded nucleotide overhang and/or at least one substituted nucleotide

As used herein, a "nucleotide overhang" refers to the unpaired nucleotide or nucleotides that protrude from the duplex structure when a 3'-end of one RNA strand extends beyond the 5'-end of the other complementary strand, or vice versa. "Blunt" or "blunt end" means that there are no unpaired nucleotides at that end of the dsRNA, i.e., no nucleotide overhang. A "blunt ended" dsRNA is a dsRNA that is double stranded over its entire length, i.e., no nucleotide overhang at either end of the molecule.

The term "terminal base pair," as used herein, refers to the last nucleotide base pair on one end of the duplex region of a double-stranded molecule. For example, if a dsRNA or other molecule is blunt ended (i.e., has no nucleotide overhangs), the last nucleotide base pairs at both ends of the molecule are terminal base pairs. Where a dsRNA or other molecule has a nucleotide overhang at one or both ends of the duplex structure, the last nucleotide base pair(s) immediately adjacent the nucleotide overhang(s) is the terminal base pair at that end(s) of the molecule.

In certain embodiments, the methods provided herein may utilize double-stranded ribonucleic acid (dsRNA) molecules 25 as modulating agents, for reducing expression of an AARS transcript such as a selected fragment or splice variant. dsR-NAs generally comprise two single strands. One strand of the dsRNA comprises a nucleotide sequence that is substantially identical to a portion of the target gene or target region (the 30 "sense" strand), and the other strand (the "complementary" or "antisense" strand) comprises a sequence that is substantially complementary to a portion of the target region. The strands are sufficiently complementary to hybridize to form a duplex structure. In certain embodiments, the complementary RNA 35 strand may be less than 30 nucleotides, less than 25 nucleotides in length, or even 19 to 24 nucleotides in length. In certain aspects, the complementary nucleotide sequence may be 20-23 nucleotides in length, or 22 nucleotides in length.

In certain embodiments, at least one of the RNA strands 40 comprises a nucleotide overhang of 1 to 4 nucleotides in length. In other embodiments, the dsRNA may further comprise at least one chemically modified nucleotide. In certain aspects, a dsRNA comprising a single-stranded overhang of 1 to 4 nucleotides may comprise a molecule wherein the 45 unpaired nucleotide of the single-stranded overhang that is directly adjacent to the terminal nucleotide pair contains a purine base. In other aspects, the last complementary nucleotide pairs on both ends of a dsRNA are a G-C pair, or, at least two of the last four terminal nucleotide pairs are G-C pairs.

Certain embodiments of the present invention may comprise microRNAs. Micro-RNAs represent a large group of small RNAs produced naturally in organisms, some of which regulate the expression of target genes. Micro-RNAs are formed from an approximately 70 nucleotide single-stranded 55 hairpin precursor transcript by Dicer. (V. Ambros et al. Current Biology 13:807, 2003). Certain micro-RNAs may be transcribed as hairpin RNA precursors, which are then processed to their mature forms by Dicer enzyme.

Certain embodiments may also employ short-interfering 60 RNAs (siRNA). In certain embodiments, the first strand of the double-stranded oligonucleotide contains two more nucleoside residues than the second strand. In other embodiments, the first strand and the second strand have the same number of nucleosides; however, the first and second strands may be 65 offset such that the two terminal nucleosides on the first and second strands are not paired with a residue on the compli-

120

mentary strand. In certain instances, the two nucleosides that are not paired are thymidine resides.

Also included are short hairpin RNAs (shRNAs) and micro RNAs (miRNAs). A double-stranded structure of an shRNA is formed by a single self-complementary RNA strand, and RNA duplex formation may be initiated either inside or outside the cell. MicroRNAs (miRNAs) are small non-coding RNAs of 20-22 nucleotides, typically excised from ~70 nucleotide foldback RNA precursor structures known as premiRNAs.

In instances when the modulating agent comprises siRNA, the agent should include a region of sufficient homology to the target region, and be of sufficient length in terms of nucleotides, such that the siRNA agent, or a fragment thereof, can mediate down regulation of the target RNA. It will be understood that the term "ribonucleotide" or "nucleotide" can, in the case of a modified RNA or nucleotide surrogate, also refer to a modified nucleotide, or surrogate replacement moiety at one or more positions. Thus, an siRNA agent is or includes a region which is at least partially complementary to the target RNA, as described herein.

In addition, an siRNA modulating agent may be modified or include nucleoside surrogates. Single stranded regions of an siRNA agent may be modified or include nucleoside surrogates, e.g., the unpaired region or regions of a hairpin structure, e.g., a region which links two complementary regions, can have modifications or nucleoside surrogates. Modification to stabilize one or more 3'- or 5'-terminus of an siRNA agent, e.g., against exonucleases, or to favor the antisense siRNA agent to enter into RISC are also useful. Modifications can include C3 (or C6, C7, C12) amino linkers, thiol linkers, carboxyl linkers, non-nucleotidic spacers (C3, C6, C9, C12, abasic, triethylene glycol, hexaethylene glycol), special biotin or fluorescein reagents that come as phosphoramidites and that have another DMT-protected hydroxyl group, allowing multiple couplings during RNA synthesis.

siRNA agents may include, for example, molecules that are long enough to trigger the interferon response (which can be cleaved by Dicer (Bernstein et al. 2001. Nature, 409:363-366) and enter a RISC (RNAi-induced silencing complex)), in addition to molecules which are sufficiently short that they do not trigger the interferon response (which molecules can also be cleaved by Dicer and/or enter a RISC), e.g., molecules which are of a size which allows entry into a RISC, e.g., molecules which resemble Dicer-cleavage products. An siRNA modulating agent, or a cleavage product thereof, can down regulate a target gene, e.g., by inducing RNAi with respect to a target RNA, preferably an AARS target such as a selected splice variant.

Each strand of an siRNA agent can be equal to or less than 35, 30, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, or 15 nucleotides in length. The strand is preferably at least 19 nucleotides in length. For example, each strand can be between 21 and 25 nucleotides in length. Preferred siRNA agents have a duplex region of 17, 18, 19, 29, 21, 22, 23, 24, or 25 nucleotide pairs, and one or more overhangs, preferably one or two 3' overhangs, of 2-3 nucleotides.

In addition to homology to target RNA and the ability to down regulate a target gene, an siRNA agent may have one or more of the following properties: it may, despite modifications, even to a very large number, or all of the nucleosides, have an antisense strand that can present bases (or modified bases) in the proper three dimensional framework so as to be able to form correct base pairing and form a duplex structure with a homologous target RNA which is sufficient to allow down regulation of the target, e.g., by cleavage of the target RNA; it may, despite modifications, even to a very large

number, or all of the nucleosides, still have "RNA-like" properties, i.e., it may possess the overall structural, chemical and physical properties of an RNA molecule, even though not exclusively, or even partly, of ribonucleotide-based content. For example, an siRNA agent can contain, e.g., a sense and/or 5 an antisense strand in which all of the nucleotide sugars contain e.g., 2' fluoro in place of 2' hydroxyl. This deoxyribonucleotide-containing agent can still be expected to exhibit RNA-like properties. While not wishing to be bound by theory, the electronegative fluorine prefers an axial orienta- 10 tion when attached to the C2' position of ribose. This spatial preference of fluorine can, in turn, force the sugars to adopt a C₃'-endo pucker. This is the same puckering mode as observed in RNA molecules and gives rise to the RNA-characteristic A-family-type helix. Further, since fluorine is a 15 good hydrogen bond acceptor, it can participate in the same hydrogen bonding interactions with water molecules that are known to stabilize RNA structures. Generally, it is preferred that a modified moiety at the 2' sugar position will be able to enter into H-bonding which is more characteristic of the OH 20 moiety of a ribonucleotide than the H moiety of a deoxyribonucleotide.

A "single strand RNAi agent" as used herein, is an RNAi agent which is made up of a single molecule. It may include a duplexed region, formed by intra-strand pairing, e.g., it may 25 be, or include, a hairpin or pan-handle structure. Single strand RNAi modulating agents are preferably antisense with regard to the target molecule. A single strand RNAi agent should be sufficiently long that it can enter the RISC and participate in RISC mediated cleavage of a target mRNA. A single strand 30 RNAi agent is at least 14, and more preferably at least 15, 20, 25, 29, 35, 40, or 50 nucleotides in length. It is preferably less than 200, 100, or 60 nucleotides in length.

Hairpin RNAi modulating agents may have a duplex region equal to or at least 17, 18, 19, 29, 21, 22, 23, 24, or 25 35 nucleotide pairs. The duplex region may preferably be equal to or less than 200, 100, or 50, in length. Certain ranges for the duplex region are 15-30, 17 to 23, 19 to 23, and 19 to 21 nucleotides pairs in length. The hairpin may have a single strand overhang or terminal unpaired region, preferably the 40 3', and preferably of the antisense side of the hairpin. In certain embodiments, overhangs are 2-3 nucleotides in length.

Certain modulating agents utilized according to the methods provided herein may comprise RNAi oligonucleotides 45 such as chimeric oligonucleotides, or "chimeras," which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is 50 modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are 55 used, compared to phosphorothioate oligodeoxynucleotides. Chimeric oligonucleotides may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleotides and/or oligonucleotide mimetics as described above. Such oligonucleotides have also been 60 referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Pat. Nos. 5,013, 830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; 65 5,700,922; and 5,955,589, each of which is herein incorporated by reference. In certain embodiments, the chimeric

oligonucleotide is RNA-DNA, DNA-RNA, RNA-DNA-RNA, DNA-RNA-DNA, or RNA-DNA-RNA-DNA, wherein the oligonucleotide is between 5 and 60 nucleotides in length.

122

In one aspect of the invention RNAi agents relate to an oligonucleotide comprising at least one ligand tethered to an altered or non-natural nucleobase. A large number of compounds can function as the altered base. The structure of the altered base is important to the extent that the altered base should not substantially prevent binding of the oligonucleotide to its target, e.g., mRNA. In certain embodiments, the altered base is difluorotolyl, nitropyrrolyl, nitroimidazolyl, nitroindolyl, napthalenyl, anthrancenyl, pyridinyl, quinolinyl, pyrenyl, or the divalent radical of any one of the nonnatural nucleobases described herein. In certain embodiments, the non-natural nucleobase is difluorotolyl, nitropyrrolyl, or nitroimidazolyl. In certain embodiments, the non-natural nucleobase is difluorotolyl. A wide variety of ligands are known in the art and are amenable to the present invention. For example, the ligand can be a steroid, bile acid, lipid, folic acid, pyridoxal, B12, riboflavin, biotin, aromatic compound, polycyclic compound, crown ether, intercalator, cleaver molecule, protein-binding agent, or carbohydrate. In certain embodiments, the ligand is a steroid or aromatic compound. In certain instances, the ligand is cholesteryl.

In other embodiments, the RNAi agent is an oligonucleotide tethered to a ligand for the purposes of improving cellular targeting and uptake. For example, an RNAi agent may be tethered to an antibody, or antigen binding fragment thereof. As an additional example, an RNAi agent may be tethered to a specific ligand binding molecule, such as a polypeptide or polypeptide fragment that specifically binds a particular cell-surface receptor.

In other embodiments, the modulating agent comprises a non-natural nucleobase, as described herein. In certain instances, the ribose sugar moiety that naturally occurs in nucleosides is replaced with a hexose sugar. In certain aspects, the hexose sugar is an allose, altrose, glucose, mannose, gulose, idose, galactose, talose, or a derivative thereof. In a preferred embodiment, the hexose is a D-hexose. In certain instances, the ribose sugar moiety that naturally occurs in nucleosides is replaced with a polycyclic heteroalkyl ring or cyclohexenyl group. In certain instances, the polycyclic heteroalkyl group is a bicyclic ring containing one oxygen atom in the ring. In certain instances, the polycyclic heteroalkyl group is a bicyclo[2.2.1]heptane, a bicyclo[3.2.1] octane, or a bicyclo[3.3.1]nonane. Examples of modified RNAi agents also include oligonucleotides containing modified backbones or non-natural internucleoside linkages, as described herein.

The present invention further encompasses oligonucleotides employing ribozymes. Synthetic RNA molecules and derivatives thereof that catalyze highly specific endoribonuclease activities are known as ribozymes. (see, e.g., U.S. Pat. No. 5,543,508 to Haseloff et al., and U.S. Pat. No. 5,545,729 to Goodchild et al.) The cleavage reactions are catalyzed by the RNA molecules themselves. In naturally occurring RNA molecules, the sites of self-catalyzed cleavage are located within highly conserved regions of RNA secondary structure (Buzayan et al., Proc. Natl. Acad. Sci. U.S.A., 1986, 83, 8859; Forster et al., Cell, 1987, 50, 9). Naturally occurring autocatalytic RNA molecules have been modified to generate ribozymes which can be targeted to a particular cellular or pathogenic RNA molecule with a high degree of specificity. Thus, ribozymes serve the same general purpose as antisense oligonucleotides (i.e., modulation of expression of a specific gene) and, like oligonucleotides, are nucleic acids possessing significant portions of single-strandedness.

In certain instances, the RNAi agents or antisense oligonucleotides for use with the methods provided herein may be modified by non-ligand group. A number of non-ligand molecules have been conjugated to oligonucleotides in order to enhance the activity, cellular distribution, cellular targeting, or cellular uptake of the oligonucleotide, and procedures for performing such conjugations are available in the scientific literature. Such non-ligand moieties have included lipid moieties, such as cholesterol (Letsinger et al., Proc. Nati. Acad. Sci. USA, 1989, 86:6553), arginine-rich peptides, cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4:1053), a thioether, e.g., hexyl-5-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660:306; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3:2765), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., *EMBO J.*, 1991, 10:111; Kabanov et al., *FEBS* Lett., 1990, 259:327; Svinarchuk et al., Biochimie, 1993, 75:49), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651; 20 Shea et al., Nuci. Acids Res., 1990, 18:3777), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14:969), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36:3651), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 25 1264:229), or an octadecylamine or hexylamino-carbonyloxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277:923). Representative United States patents that teach the preparation of such oligonucleotide conjugates have been listed above. Typical conjugation protocols involve the synthesis of oligonucleotides bearing an aminolinker at one or more positions of the sequence. The amino group is then reacted with the molecule being conjugated using appropriate coupling or activating reagents. The conjugation reaction may be performed either with the oligonucleotide still bound to the solid support or following cleavage of the oli- 35 gonucleotide in solution phase. Purification of the oligonucleotide conjugate by HPLC typically affords the pure

Additional examples of RNAi agents may be found in U.S. Application Publication Nos. 2007/0275465, 2007/0054279, 40 2006/0287260, 2006/0035254, 2006/0008822, which are incorporated by reference. Also included are vector delivery systems that are capable of expressing the AARS-targeting sequences described herein. Included are vectors that express siRNA or other duplex-forming RNA interference molecules. 45

A vector or nucleic acid construct system can comprise a single vector or plasmid, two or more vectors or plasmids, which together contain the total DNA to be introduced into the genome of the host cell, or a transposon. The choice of the vector will typically depend on the compatibility of the vector 50 with the host cell into which the vector is to be introduced. In the present case, the vector or nucleic acid construct is preferably one which is operably functional in a mammalian cell, such as a muscle cell. The vector can also include a selection marker such as an antibiotic or drug resistance gene, or a 55 reporter gene (i.e., green fluorescent protein, luciferase), that can be used for selection or identification of suitable transformants or transfectants. Exemplary delivery systems may include viral vector systems (i.e., viral-mediated transduction) including, but not limited to, retroviral (e.g., lentiviral) 60 vectors, adenoviral vectors, adeno-associated viral vectors, and herpes viral vectors, among others known in the art.

XI. Drug Discovery

Certain embodiments relate to the use of AARS polypeptides, antibodies, or polynucleotides in drug discovery, typically to identify agents that modulate one or more of the non-canonical activities of the reference AARS polypeptide, e.g., the AARS protein fragment. For example, certain embodiments include methods of identifying one or more "cellular binding partners" of an AARS reference polypeptide, such as a cellular protein, lipid, nucleic acid or other host molecule that directly or physically interacts with the AARS polypeptide. Particular examples include for example cell-surface receptors, such as GPCRs, protein-protein interaction domains, and extracellular or intracellular domains thereof.

Also included are methods of identifying host molecules that participate in one or more non-canonical activities of the AARS polypeptide, including molecules that directly or indirectly interact with the cellular binding partner, and either regulate its role in a non-canonical activity, or are regulated by the binding partner. Such host molecules include both upstream and downstream components of the non-canonical pathway, typically related by about 1, 2, 3, 4, 5 or more identifiable steps in the pathway, relative to the cellular binding partner/AARS protein interaction.

Certain aspects include methods of identifying a compound (e.g., polypeptide) or other agent that agonizes or antagonizes the non-canonical activity of an AARS reference polypeptide or active variant thereof, such as by interacting with the AARS polypeptide and/or one or more of its cellular binding partners. Also included are methods of identifying agents that modulate the expression (e.g., splicing) of AARS splice variants, or modulate the activity of proteases that otherwise regulate the production of endogenous AARS protein fragments (resectins) at the protein level.

Certain embodiments therefore include methods of identifying a binding partner of an AARS reference polypeptide, comprising a) combining the AARS polypeptide with a biological sample under suitable conditions, and b) detecting specific binding of the AARS polypeptide to a binding partner, thereby identifying a binding partner that specifically binds to the AARS reference polypeptide. Also included are methods of screening for a compound that specifically binds to an AARS reference polypeptide or a binding partner of the AARS polypeptide, comprising a) combining the polypeptide or the binding partner with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide or the binding partner to the test compound, thereby identifying a compound that specifically binds to the polypeptide or its binding partner. In certain embodiments, the compound is a polypeptide or peptide. In certain embodiments, the compound is a small molecule or other (e.g., nonbiological) chemical compound. In certain embodiments, the compound is a peptide mimetic.

Any method suitable for detecting protein-protein interactions may be employed for identifying cellular proteins that interact with an AARS reference polypeptide, interact with one or more of its cellular binding partners, or both. Examples of traditional methods that may be employed include co-immunoprecipitation, cross-linking, and co-purification through gradients or chromatographic columns of cell lysates or proteins obtained from cell lysates, mainly to identify proteins in the lysate that interact with the AARS polypeptide.

In these and related embodiments, at least a portion of the amino acid sequence of a protein that interacts with an AARS polypeptide or its binding partner can be ascertained using techniques well known to those of skill in the art, such as via the Edman degradation technique. See, e.g., Creighton Proteins: Structures and Molecular Principles, W. H. Freeman & Co., N.Y., pp. 34 49, 1983. The amino acid sequence obtained may be used as a guide for the generation of oligonucleotide mixtures that can be used to screen for gene sequences encod-

ing such proteins. Screening may be accomplished, for example, by standard hybridization or PCR techniques, as described herein and known in the art. Techniques for the generation of oligonucleotide mixtures and the screening are well known. See, e.g., Ausubel et al. Current Protocols in 5 Molecular Biology Green Publishing Associates and Wiley Interscience, N.Y., 1989; and Innis et al., eds. PCR Protocols: A Guide to Methods and Applications Academic Press, Inc., New York, 1990.

Additionally, methods may be employed in the simultaneous identification of genes that encode the binding partner or other polypeptide. These methods include, for example, probing expression libraries, in a manner similar to the well known technique of antibody probing of lambda-gt11 libraries, using labeled AARS protein, or another polypeptide, 15 peptide or fusion protein, e.g., a variant AARS polypeptide or AARS domain fused to a marker (e.g., an enzyme, fluor, luminescent protein, or dye), or an Ig-Fc domain.

One method that detects protein interactions in vivo, the two-hybrid system, is described in detail for illustration only 20 and not by way of limitation. One example of this system has been described (Chien et al., *PNAS USA* 88:9578 9582, 1991) and is commercially available from Clontech (Palo Alto, Calif.).

Briefly, utilizing such a system, plasmids may be con- 25 structed that encode two hybrid proteins: one plasmid consists of nucleotides encoding the DNA-binding domain of a transcription activator protein fused to an AARS reference nucleotide sequence (or, in certain embodiments, its binding partner), or a variant thereof, and the other plasmid consists of 30 nucleotides encoding the transcription activator protein's activation domain fused to a cDNA (or collection of cDNAs) encoding an unknown protein(s) that has been recombined into the plasmid as part of a cDNA library. The DNA-binding domain fusion plasmid and the activator cDNA library may 35 be transformed into a strain of the yeast Saccharomyces cerevisiae that contains a reporter gene (e.g., HBS or lacZ) whose regulatory region contains the transcription activator's binding site. Either hybrid protein alone cannot activate transcription of the reporter gene: the DNA-binding domain 40 hybrid cannot because it does not provide activation function and the activation domain hybrid cannot because it cannot localize to the activator's binding sites. Interaction of the two hybrid proteins reconstitutes the functional activator protein and results in expression of the reporter gene, which is 45 detected by an assay for the reporter gene product.

The two-hybrid system or other such methodology may be used to screen activation domain libraries for proteins that interact with the "bait" gene product. By way of example, and not by way of limitation, an AARS reference polypeptide or 50 variant may be used as the bait gene product. An AARS binding partner may also be used as a "bait" gene product. Total genomic or cDNA sequences are fused to the DNA encoding an activation domain. This library and a plasmid encoding a hybrid of a bait AARS gene product fused to the 55 DNA-binding domain are co-transformed into a yeast reporter strain, and the resulting transformants are screened for those that express the reporter gene.

A cDNA library of the cell line from which proteins that interact with bait AARS gene products are to be detected can 60 be made using methods routinely practiced in the art. For example, the cDNA fragments can be inserted into a vector such that they are translationally fused to the transcriptional activation domain of GAL4. This library can be co-transformed along with the bait gene-GAL4 fusion plasmid into a 65 yeast strain, which contains a lacZ gene driven by a promoter that contains GAL4 activation sequence. A cDNA encoded

protein, fused to GAL4 transcriptional activation domain, that interacts with bait gene product will reconstitute an active GAL4 protein and thereby drive expression of the HIS3 gene. Colonies, which express HIS3, can be detected by their growth on Petri dishes containing semi-solid agar based media lacking histidine. The cDNA can then be purified from these strains, and used to produce and isolate the bait AARS gene-interacting protein using techniques routinely practiced in the art.

Also included are three-hybrid systems, which allow the detection of RNA-protein interactions in yeast. See, e.g., Hook et al., RNA. 11:227-233, 2005. Accordingly, these and related methods can be used to identify a cellular binding partner of an AARS polypeptide, and to identify other proteins or nucleic acids that interact with the AARS polypeptide, the cellular binding partner, or both.

Certain embodiments relate to the use of interactome screening approaches. Particular examples include protein domain-based screening (see, e.g., Boxem et al., *Cell.* 134: 534-545, 2008; and Yu et al., *Science.* 322:10-110, 2008).

As noted above, once isolated, binding partners can be identified and can, in turn, be used in conjunction with standard techniques to identify proteins or other compounds with which it interacts. Certain embodiments thus relate to methods of screening for a compound that specifically binds to the binding partner of an AARS reference polypeptide, comprising a) combining the binding partner with at least one test compound under suitable conditions, and b) detecting binding of the binding partner to the test compound, thereby identifying a compound that specifically binds to the binding partner. In certain embodiments, the test compound is a polypeptide. In certain embodiments, the test compound or peptide mimetic.

Certain embodiments include methods of screening for a compound that modulates the activity of an AARS reference polypeptide, comprising a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide. Certain embodiments include methods of screening for a compound that modulates the activity of a binding partner of an AARS reference polypeptide, comprising a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the binding partner, b) assessing the activity of the binding partner in the presence of the test compound, and c) comparing the activity of the binding partner in the presence of the test compound with the activity of the binding partner in the absence of the test compound, wherein a change in the activity of the binding partner in the presence of the test compound is indicative of a compound that modulates the activity of the binding partner. Typically, these and related embodiments include assessing a selected non-canonical activity that is associated with the AARS polypeptide or its binding partner. Included are in vitro and in vivo conditions, such as cell culture conditions.

Certain embodiments include methods of screening a compound for effectiveness as a full or partial agonist of an AARS reference polypeptide or an active fragment or variant thereof, comprising a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity

in the sample, typically by measuring an increase in the non-canonical activity of the AARS polypeptide. Certain methods include a) exposing a sample comprising a binding partner of the AARS polypeptide to a compound, and b) detecting agonist activity in the sample, typically by measuring an increase in the selected non-canonical activity of the AARS polypeptide. Certain embodiments include compositions that comprise an agonist compound identified by the method and a pharmaceutically acceptable carrier or excipient.

Also included are methods of screening a compound for effectiveness as a full or partial antagonist of an AARS reference polypeptide, comprising a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample, typically by measuring a 15 decrease in the non-canonical activity of the AARS polypeptide. Certain methods include a) exposing a sample comprising a binding partner of the AARS polypeptide to a compound, and b) detecting antagonist activity in the sample, typically by measuring a decrease in the selected non-canonical activity of the AARS polypeptide. Certain embodiments include compositions that comprise an antagonist compound identified by the method and a pharmaceutically acceptable carrier or excipient.

In certain embodiments, in vitro systems may be designed 25 to identify compounds capable of interacting with or modulating an AARS reference sequence or its binding partner. Certain of the compounds identified by such systems may be useful, for example, in modulating the activity of the pathway, and in elaborating components of the pathway itself. They 30 may also be used in screens for identifying compounds that disrupt interactions between components of the pathway; or may disrupt such interactions directly. One exemplary approach involves preparing a reaction mixture of the AARS polypeptide and a test compound under conditions and for a 35 time sufficient to allow the two to interact and bind, thus forming a complex that can be removed from and/or detected in the reaction mixture

In vitro screening assays can be conducted in a variety of ways. For example, an AARS polypeptide, a cellular binding 40 partner, or test compound(s) can be anchored onto a solid phase. In these and related embodiments, the resulting complexes may be captured and detected on the solid phase at the end of the reaction. In one example of such a method, the AARS polypeptide and/or its binding partner are anchored 45 onto a solid surface, and the test compound(s), which are not anchored, may be labeled, either directly or indirectly, so that their capture by the component on the solid surface can be detected. In other examples, the test compound(s) are anchored to the solid surface, and the AARS polypeptide 50 and/or its binding partner, which are not anchored, are labeled or in some way detectable. In certain embodiments, microtiter plates may conveniently be utilized as the solid phase. The anchored component (or test compound) may be immobilized by non-covalent or covalent attachments. Non-covalent 55 attachment may be accomplished by simply coating the solid surface with a solution of the protein and drying. Alternatively, an immobilized antibody, preferably a monoclonal antibody, specific for the protein to be immobilized may be used to anchor the protein to the solid surface. The surfaces 60 may be prepared in advance and stored.

To conduct an exemplary assay, the non-immobilized component is typically added to the coated surface containing the anchored component. After the reaction is complete, un-reacted components are removed (e.g., by washing) under conditions such that any specific complexes formed will remain immobilized on the solid surface. The detection of complexes

anchored on the solid surface can be accomplished in a number of ways. For instance, where the previously non-immobilized component is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the previously non-immobilized component is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the previously non-immobilized component (the antibody, in turn, may be directly labeled or indirectly labeled with a labeled anti-lg antibody).

Alternatively, the presence or absence of binding of a test compound can be determined, for example, using surface plasmon resonance (SPR) and the change in the resonance angle as an index, wherein an AARS polypeptide or a cellular binding partner is immobilized onto the surface of a commercially available sensorchip (e.g., manufactured by BIA-CORETM) according to a conventional method, the test compound is contacted therewith, and the sensorchip is illuminated with a light of a particular wavelength from a particular angle. The binding of a test compound can also be measured by detecting the appearance of a peak corresponding to the test compound by a method wherein an AARS polypeptide or a cellular binding partner is immobilized onto the surface of a protein chip adaptable to a mass spectrometer, a test compound is contacted therewith, and an ionization method such as MALDI-MS, ESI-MS, FAB-MS and the like is combined with a mass spectrometer (e.g., double-focusing mass spectrometer, quadrupole mass spectrometer, time-offlight mass spectrometer, Fourier transformation mass spectrometer, ion cyclotron mass spectrometer and the like).

In certain embodiments, cell-based assays, membrane vesicle-based assays, or membrane fraction-based assays can be used to identify compounds that modulate interactions in the non-canonical pathway of the selected AARS polypeptide. To this end, cell lines that express an AARS polypeptide and/or a binding partner, or a fusion protein containing a domain or fragment of such proteins (or a combination thereof), or cell lines (e.g., COS cells, CHO cells, HEK293 cells, Hela cells etc.) that have been genetically engineered to express such protein(s) or fusion protein(s) can be used. Test compound(s) that influence the non-canonical activity can be identified by monitoring a change (e.g., a statistically significant change) in that activity as compared to a control or a predetermined amount.

For embodiments that relate to antisense and RNAi agents, for example, also included are methods of screening a compound for effectiveness in altering expression of an AARS reference polynucleotide, comprising a) exposing a sample comprising the AARS reference polynucleotide to a compound such as a potential antisense oligonucleotide, and b) detecting altered expression of the AARS polynucleotide. In certain non-limiting examples, these and related embodiments can be employed in cell-based assays or in cell-free translation assays, according to routine techniques in the art. Also included are the antisense and RNAi agents identified by such methods.

Antibodies to AARS protein fragments can also be used in screening assays, such as to identify an agent that specifically binds to an AARS, confirm the specificity or affinity of an agent that binds to an AARS protein fragment, or identify the site of interaction between the agent and the AARS protein fragment. Included are assays in which the antibody is used as a competitive inhibitor of the agent. For instance, an antibody that specifically binds to an AARS protein fragment with a known affinity can act as a competitive inhibitor of a selected agent, and be used to calculate the affinity of the agent for the AARS protein fragment. Also, one or more antibodies that

specifically bind to known epitopes or sites of an AARS protein fragment can be used as a competitive inhibitor to confirm whether or not the agent binds at that same site. Other variations will be apparent to persons skilled in the art.

Also included are any of the above methods, or other 5 screening methods known in the art, which are adapted for high-throughput screening (HTS). HTS typically uses automation to run a screen of an assay against a library of candidate compounds, for instance, an assay that measures an increase or a decrease in a non-canonical activity, as 10 described herein.

Any of the screening methods provided herein may utilize small molecule libraries or libraries generated by combinatorial chemistry. Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in 15 the art and can be screened with any of the assays of the invention. Examples of methods for the synthesis of molecular libraries can be found in: (Carell et al., 1994; Carell et al., 1994; Cho et al., 1993; DeWitt et al., 1993; Gallop et al., 1994; Zuckermann et al., 1994).

Libraries of compounds may be presented in solution (Houghten et al., 1992) or on beads (Lam et al., 1991), on chips (Fodor et al., 1993), bacteria, spores (Ladner et al., U.S. Pat. No. 5,223,409, 1993), plasmids (Cull et al., 1992) or on phage (Cwirla et al., 1990; Devlin et al., 1990; Felici et al., 25 1991; Ladner et al., U.S. Pat. No. 5,223,409, 1993; Scott and Smith, 1990). Embodiments of the present invention encompass the use of different libraries for the identification of small molecule modulators of one or more AARS protein fragments, their cellular binding partners, and/or their related non-canonical activities. Libraries useful for the purposes of the invention include, but are not limited to, (1) chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides and/or organic molecules.

Chemical libraries consist of structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening. Natural product libraries are derived from collections of microorganisms, animals, plants, or marine organisms which are used to create mixtures 40 for screening by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of plants or marine organisms. Natural product libraries include polyketides, non-ribosomal peptides, and variants (non-naturally occurring) thereof. See, e.g., Cane et al., *Science* 282: 45 63-68, 1998. Combinatorial libraries may be composed of large numbers of peptides, oligonucleotides or organic compounds as a mixture. They are relatively easy to prepare by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods.

More specifically, a combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis, by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (amino acids) in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of 60 chemical building blocks.

For a review of combinatorial chemistry and libraries created therefrom, see, e.g., Huc, I. and Nguyen, R. (2001) Comb. Chem. High Throughput Screen 4:53-74; Lepre, C A. (2001) Drug Discov. Today 6:133-140; Peng, S. X. (2000) 65 Biomed. Chromatogr. 14:430-441; Bohm, H. J. and Stahl, M. (2000) Curr. Opin. Chem. Biol. 4:283-286; Barnes, C and

130

Balasubramanian, S. (2000) Curr. Opin. Chem. Biol. 4:346-350; Lepre, Enjalbal, C, et al., (2000) Mass Septrom Rev. 19:139-161; Hall, D. G., (2000) Nat. Biotechnol. 18:262-262; Lazo, J. S., and Wipf, P. (2000) J. Pharmacol. Exp. Ther. 293:705-709; Houghten, R. A., (2000) Ann. Rev. Pharmacol. Toxicol. 40:273-282; Kobayashi, S. (2000) Curr. Opin. Chem. Biol. (2000) 4:338-345; Kopylov, A. M. and Spiridonova, V. A. (2000) Mol. Biol. (Mosk) 34:1097-1113; Weber, L. (2000) Curr. Opin. Chem. Biol. 4:295-302; Dolle, R. E. (2000) J. Comb. Chem. 2:383-433; Floyd, C D., et al., (1999) Prog. Med. Chem. 36:91-168; Kundu, B., et al., (1999) Prog. Drug Res. 53:89-156; Cabilly, S. (1999) Mol. Biotechnol. 12:143-148; Lowe, G. (1999) Nat. Prod. Rep. 16:641-651; Dolle, R. E. and Nelson, K. H. (1999) J. Comb. Chem. 1:235-282; Czarnick, A. W. and Keene, J. D. (1998) Curr. Biol. 8:R705-R707; Dolle, R. E. (1998) Mol. Divers. 4:233-256; Myers, P. L., (1997) Curr. Opin. Biotechnol. 8:701-707; and Pluckthun, A. and Cortese, R. (1997) Biol. Chem. 378:

Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 MPS, 390 MPS, Advanced Chem Tech, Louisville Ky., Symphony, Rainin, Woburn, Mass., 433A Applied Biosystems, Foster City, Calif., 9050 Plus, Millipore, Bedford, Mass.). In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Asinex, Moscow, Ru, Tripos, Inc., St. Louis, Mo., ChemStar, Ltd., Moscow, RU, 3D Pharmaceuticals, Exton, Pa., Martek Biosciences, Columbia, Md., etc.).

XII. Methods of Use

Embodiments of the present invention include therapeutic methods of treatment. Accordingly, the AARS agents 35 described herein, including AARS polypeptides, AARS polynucleotides, AARS polynucleotide-based vectors, AARS expressing host cells, antisense oligonucleotides, RNAi agents, as well as binding agents such as peptides, antibodies and antigen-binding fragments, peptide mimetics and other small molecules, can be used to treat a variety of non-limiting diseases or conditions associated with the non-canonical activities of a reference AARS. Examples of such non-canonical activities include modulation of extracellular signaling, modulation of cell proliferation, modulation of cell migration, modulation of cell differentiation (e.g., hematopoiesis, neurogenesis, myogenesis, osteogenesis, and adipogenesis), modulation of apoptosis or other forms of cell death, modulation of angiogenesis, modulation of cell binding, modulation of cellular metabolism, modulation of cytokine production or activity, modulation of cytokine receptor activity, modulation of cellular uptake, or secretion, immunomodulation, modulation of inflammation, modulation of metabolic processes such as glucose control, and the like.

Included are polynucleotide-based therapies, such as antisense therapies and RNAi interference therapies, which typically relate to reducing the expression of a target molecule, such as an endogenous fragment of an AARS, or a cellular binding partner of an AARS polypeptide, which otherwise contributes to its non-canonical activity. Antisense or RNAi therapies typically antagonize the non-canonical activity, such as by reducing expression of the AARS reference polypeptide. Also included are polypeptides or peptides, antibodies or antigen-binding fragment, peptide mimetics, or other small molecule-based therapies, which either agonize or antagonize the non-canonical activity of an AARS reference polypeptide, such as by interacting directly with the AARS polypeptide, its cellular binding partner(s), or both.

20

These and related embodiments include methods of using the AARS agents or compositions of the present invention for treating a cell, tissue or subject. The cells or tissues that may be treated or modulated by the present invention are preferably mammalian cells or tissues, or more preferably human cells or tissues. Such cells or tissues can be of a healthy state or of a diseased state.

In certain embodiments, for example, methods are provided for modulating therapeutically relevant cellular activities including, but not limited to, cellular metabolism, cell differentiation, cell proliferation, cellular uptake, cell secretion, cell death, cell mobilization, cell migration, gene transcription, mRNA translation, cell impedance, immune responses, inflammatory responses, and the like, comprising contacting a cell with an AARS agent or composition as described herein. In certain embodiments, the cell is in a subject. Accordingly, the AARS compositions may be employed in treating essentially any cell or tissue or subject that would benefit from modulation of one or more such activities.

The AARS agents and compositions may also be used in any of a number of therapeutic contexts including, for example, those relating to the treatment or prevention of neoplastic diseases, immune system diseases or conditions (e.g., autoimmune diseases and inflammation), infectious 25 diseases, metabolic diseases, neuronal/neurological diseases, muscular/cardiovascular diseases, diseases associated with aberrant hematopoiesis, diseases associated with aberrant myogenesis, diseases associated with aberrant neurogenesis, diseases associated with aberrant adipogenesis, diseases associated with aberrant cell survival, diseases associated with aberrant lipid uptake, diseases associated with aging (e.g. hearing loss, peripheral or autonomic neuropathies, senile dementia, retinopathy) and 35 others

For example, in certain illustrative embodiments, the AARS compositions of the invention may be used to modulate angiogenesis, e.g., via modulation of endothelial cell proliferation and/or signaling. Endothelial cell proliferation 40 and/or signaling may be monitored using an appropriate cell line (e.g., human microvascular endothelial lung cells (HM-VEC-L) and human umbilical vein endothelial cells (HU-VEC)), and using an appropriate assay (e.g., endothelial cell migration assays, endothelial cell proliferation assays, tubeforming assays, matrigel plug assays, etc), many of which are known and available in the art.

Therefore, in related embodiments, the compositions of the invention may be employed in the treatment of essentially any cell or tissue or subject that would benefit from modulation of 50 angiogenesis. For example, in some embodiments, a cell or tissue or subject experiencing or susceptible to angiogenesis (e.g., an angiogenic condition) may be contacted with a suitable composition of the invention to inhibit an angiogenic condition. In other embodiments, a cell or tissue experiencing 55 or susceptible to insufficient angiogenesis (e.g., an angiostatic condition) may be contacted with an appropriate composition of the invention in order to interfere with angiostatic activity and/or promote angiogenesis.

Also included are methods of modulating hematopoiesis 60 and related conditions. Examples of hematopoietic processes that may be modulated by the AARS polypeptides of the invention include, without limitation, the formation of myeloid cells (e.g., erythroid cells, mast cells monocytes/macrophages, myeloid dendritic cells, granulocytes such as 65 basophils, neutrophils, and eosinophils, megakaryocytes, platelets) and lymphoid cells (e.g., natural killer cells, lym-

phoid dendritic cells, B-cells, and T-cells). Certain specific hematopoietic processes include erythropoiesis, granulopoiesis, lymphopoiesis, megakaryopoiesis, thrombopoiesis, and others. Also included are methods of modulating the trafficking or mobilization of hematopoietic cells, including hematopoietic stem cells, progenitor cells, erythrocytes, granulocytes, lymphocytes, megakaryocytes, and thrombocytes.

The methods of modulating hematopoiesis may be practiced in vivo, in vitro, ex vivo, or in any combination thereof. These methods can be practiced on any biological sample, cell culture, or tissue that contains hematopoietic stem cells, hematopoietic progenitor cells, or other stem or progenitor cells that are capable of differentiating along the hematopoietic lineage (e.g., adipose tissue derived stem cells). For in vitro and ex vivo methods, stem cells and progenitor cells, whether of hematopoietic origin or otherwise, can be isolated and/or identified according to the techniques and characteristics described herein and known in the art.

The compositions of the invention may also be useful as immunomodulators for treating anti- or pro-inflammatory indications by modulating the cells that mediate, either directly or indirectly, autoimmune and/or inflammatory diseases, conditions and disorders. The utility of the compositions of the invention as immunomodulators or modulators of inflammation can be monitored using any of a number of known and available techniques in the art including, for example, migration assays (e.g., using leukocytes or lymphocytes) or cell viability assays (e.g., using B-cells, T-cells, monocytes or NK cells).

"Inflammation" refers generally to the biological response of tissues to harmful stimuli, such as pathogens, damaged cells (e.g., wounds), and irritants. The term "inflammatory response" refers to the specific mechanisms by which inflammation is achieved and regulated, including, merely by way of illustration, immune cell activation or migration, cytokine production, vasodilation, including kinin release, fibrinolysis, and coagulation, among others described herein and known in the art.

Clinical signs of chronic inflammation are dependent upon duration of the illness, inflammatory lesions, cause and anatomical area affected. (see, e.g., Kumar et al., Robbins Basic Pathology-8th Ed., 2009 Elsevier, London; Miller, L M, Pathology Lecture Notes, Atlantic Veterinary College, Charlottetown, PEI, Canada). Chronic inflammation is associated with a variety of pathological conditions or diseases, including, for example, allergies, Alzheimer's disease, anemia, aortic valve stenosis, arthritis such as rheumatoid arthritis and osteoarthritis, cancer, congestive heart failure, fibromyalgia, fibrosis, heart attack, kidney failure, lupus, pancreatitis, stroke, surgical complications, inflammatory lung disease, inflammatory bowel disease, atherosclerosis, neurological disorders, diabetes, metabolic disorders, obesity, and psoriasis, among others described herein and known in the art. Hence, AARS compositions may be used to treat or manage chronic inflammation, modulate any of one or more of the individual chronic inflammatory responses, or treat any one or more diseases or conditions associated with chronic inflammation.

Criteria for assessing the signs and symptoms of inflammatory and other conditions, including for purposes of making differential diagnosis and also for monitoring treatments such as determining whether a therapeutically effective dose has been administered in the course of treatment, e.g., by determining improvement according to accepted clinical criteria, will be apparent to those skilled in the art and are exemplified by the teachings of e.g., Berkow et al., eds., The

Merck Manual, 16th edition, Merck and Co., Rahway, N.J., 1992; Goodman et al., eds., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th edition, Pergamon Press, Inc., Elmsford, N.Y., (2001); Avery's Drug Treatment: Principles and Practice of Clinical Pharmacology and 5 Therapeutics, 3rd edition, ADIS Press, Ltd., Williams and Wilkins, Baltimore, Md. (1987); Ebadi, Pharmacology, Little, Brown and Co., Boston, (1985); Osolci al., eds., Remington's Pharmaceutical Sciences, 18th edition, Mack Publishing Co., Easton, Pa. (1990); Katzung, Basic and Clinical Pharmacology, Appleton and Lange, Norwalk, Conn. (1992).

In other embodiments, the AARS compositions of the invention may be used to modulate cellular proliferation and/ or survival and, accordingly, for treating or preventing diseases, disorders or conditions characterized by abnormalities in cellular proliferation and/or survival. For example, in certain embodiments, the AARS compositions may be used to modulate apoptosis and/or to treat diseases or conditions associated with abnormal apoptosis. Apoptosis can be monitored by any of a number of available techniques known and available in the art including, for example, assays that measure fragmentation of DNA, alterations in membrane asymmetry, activation of apoptotic caspases and/or release of cytochrome C and AIF.

The progress of these and other therapies (e.g., ex vivo 25 therapies) can be readily monitored by conventional methods and assays and based on criteria known to the physician or other persons of skill in the art.

XIII. Pharmaceutical Formulations, Administration and Kits

Embodiments of the present invention include AARS polynucleotides, AARS polypeptides, host cells expressing AARS polypeptides, binding agents, modulatory agents, or 35 other compounds described herein, formulated in pharmaceutically-acceptable or physiologically-acceptable solutions for administration to a cell or an animal, either alone, or in combination with one or more other modalities of therapy. It will also be understood that, if desired, the compositions of 40 the invention may be administered in combination with other agents as well, such as, e.g., other proteins or polypeptides or various pharmaceutically-active agents. There is virtually no limit to other components that may also be included in the compositions, provided that the additional agents do not 45 adversely affect the modulatory or other effects desired to be achieved.

In the pharmaceutical compositions of the invention, formulation of pharmaceutically-acceptable excipients and carrier solutions is well-known to those of skill in the art, as is the 50 development of suitable dosing and treatment regimens for using the particular compositions described herein in a variety of treatment regimens, including e.g., oral, parenteral, intravenous, intranasal, subcutaneous, and intramuscular administration and formulation. 55

In certain applications, the pharmaceutical or therapeutic compositions of the invention do not stimulate an immune reaction. In other embodiments, the pharmaceutical or therapeutic compositions of the invention, typically comprising one or more AARS polypeptides or polynucleotides, stimulate an immune reaction, such as by serving as an adjuvant in a vaccine or related composition, or being present in a composition together with a separate adjuvant or agent stimulates an immune response.

In certain embodiments, the AARS agents such as AARS 65 polypeptides, AARS polynucleotides, and antibodies have a solubility that is desirable for the particular mode of admin-

istration, such intravenous administration. Examples of desirable solubilities include at least about 1 mg/ml, at least about 10 mg/ml, at least about 25 mg/ml, and at least about 50 mg/ml.

In certain applications, the pharmaceutical compositions disclosed herein may be delivered via oral administration to a subject. As such, these compositions may be formulated with an inert diluent or with an assimilable edible carrier, or they may be enclosed in hard- or soft-shell gelatin capsule, or they may be compressed into tablets, or they may be incorporated directly with the food of the diet.

In certain circumstances it will be desirable to deliver the pharmaceutical compositions disclosed herein parenterally, subcutaneously, intravenously, intramuscularly, intra-arterially, intrathecally, intraparenchymally, intraventricularly, intraurethrally, intrasternally, intracranially, intrasynovially, or even intraperitoneally as described, for example, in U.S. Pat. No. 5,543,158; U.S. Pat. No. 5,641,515 and U.S. Pat. No. 5,399,363 (each specifically incorporated herein by reference in its entirety). Suitable devices for parenteral administration include needle (including microneedle) injectors, needle-free injectors, and infusion techniques.

Solutions of the active compounds as free base or pharmacologically acceptable salts may be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions may also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions (U.S. Pat. No. 5,466,468, specifically incorporated herein by reference in its entirety). In all cases the form should be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and should be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/ or vegetable oils. Proper fluidity may be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be facilitated by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. In this connection, a sterile aqueous medium that can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage may be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion (see, e.g., Remington's Pharmaceutical Sciences, 15th Edition, pp. 1035-1038 and 1570-1580). Some variation in dosage will

necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject. Moreover, for human administration, preparations should meet sterility, pyrogenicity, and the general safety and purity standards as required by FDA Office of Biologics standards.

Sterile injectable solutions can be prepared by incorporating the active compounds in the required amount in the appropriate solvent with the various other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

The compositions disclosed herein may be formulated in a neutral or salt form. Pharmaceutically-acceptable salts, include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, 25 or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethy- 30 lamine, histidine, procaine and the like. Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms such as injectable solutions, drug- 35 release capsules, and the like.

As used herein, "carrier" includes any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and 40 the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be 45 incorporated into the compositions.

The phrase "pharmaceutically-acceptable" refers to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to a human. The preparation of an aqueous composition that contains a protein as an active ingredient is well understood in the art. Typically, such compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection can also be prepared. The preparation can also be emulsified.

In certain embodiments, the pharmaceutical compositions may be delivered by intranasal sprays, inhalation, and/or other aerosol delivery vehicles. Methods for delivering genes, polynucleotides, and peptide compositions directly to the lungs via nasal aerosol sprays have been described e.g., in 60 U.S. Pat. No. 5,756,353 and U.S. Pat. No. 5,804,212 (each specifically incorporated herein by reference in its entirety). Likewise, the delivery of drugs using intranasal microparticle resins (Takenaga et al., 1998) and lysophosphatidyl-glycerol compounds (U.S. Pat. No. 5,725,871, specifically incorporated herein by reference in its entirety) are also well-known in the pharmaceutical arts. Likewise, transmucosal drug

136

delivery in the form of a polytetrafluoroetheylene support matrix is described in U.S. Pat. No. 5,780,045 (specifically incorporated herein by reference in its entirety).

The pharmaceutical compositions may be formulated to be immediate and/or sustained release. Sustained release compositions include delayed, modified, pulsed, controlled, targeted and programmed release. Thus the compositions may be formulated as a suspension or as a solid, semi-solid, or thixotropic liquid for administration as an implanted depot providing sustained release of the AARS polynucleotides, AARS polypeptides, binding agents, modulatory agents and other active agents. Examples of such formulations include without limitation, drug-coated stents and semi-solids and suspensions comprising drug-loaded poly(DL-lactic-co-glycolic)acid (PGLA), poly(DL-lactide-co-glycolide) (PLG) or poly(lactide) (PLA) lamellar vesicles or microparticles, hydrogels (Hoffman AS: Ann. N.Y. Acad. Sci. 944: 62-73 (2001)), poly-amino acid nanoparticles systems, sold under 20 the trademark MEDUSA® developed by Flamel Technologies Inc., non aqueous gel systems sold under the trademark ATRIGEL® developed by Atrix, Inc., and Sucrose Acetate Isobutyrate Extended Release formulations sold under the trademark SABER® developed by Durect Corporation, and lipid-based systems developed by SkyePharma and sold under the trademark DEPOFOAM®.

Sustained release devices capable of delivering desired doses of the pharmaceutical compositions over extended periods of time are known in the art. For example, U.S. Pat. Nos. 5,034,229; 5,557,318; 5,110,596; 5,728,396; 5,985,305; 6,113,938; 6,156,331; 6,375,978; and 6,395,292; teach osmotically-driven devices capable of delivering an active agent formulation, such as a solution or a suspension, at a desired rate over an extended period of time (i.e., a period ranging from more than one week up to one year or more). Other exemplary sustained release devices include regulatortype pumps that provide constant flow, adjustable flow, or programmable flow of beneficial agent formulations, which are available from Medtronic including the Intrathecal pumps sold under the trademark SYNCHROMED INFUSION SYS-TEM®, the Johnson and Johnson systems sold under the trademark CODMAN® division pumps, and INSET® technologies pumps. Further examples of devices are described in U.S. Pat. Nos. 6,283,949; 5,976,109; 5,836,935; and 5,511, 355.

In certain embodiments, the delivery may occur by use of liposomes, nanocapsules, microparticles, microspheres, lipid particles, vesicles, and the like, for the introduction of the compositions of the present invention into suitable host cells. In particular, the compositions of the present invention may be formulated for delivery either encapsulated in a lipid particle, a liposome, a vesicle, a nanosphere, a nanoparticle or the like. The formulation and use of such delivery vehicles can be carried out using known and conventional techniques.

In certain embodiments, the agents provided herein may be attached to a pharmaceutically acceptable solid substrate, including biocompatible and biodegradable substrates such as polymers and matrices. Examples of such solid substrates include, without limitation, polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(viny-lalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ-ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as poly(lactic-co-glycolic acid) (PLGA) and the LUPRON DEPOTTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), poly-D-(-)-3-hydroxybutyric acid, col-

lagen, metal, hydroxyapatite, bioglass, aluminate, bioceramic materials, and purified proteins.

In one particular embodiment, the solid substrate comprises biodegradable polymers sold under the trademark ATRIGELTM (QLT, Inc., Vancouver, B.C.). The ATRIGEL® 5 drug delivery system consists of biodegradable polymers dissolved in biocompatible carriers. Pharmaceuticals may be blended into this liquid delivery system at the time of manufacturing or, depending upon the product, may be added later by the physician at the time of use. When the liquid product is 10 injected into the subcutaneous space through a small gauge needle or placed into accessible tissue sites through a cannula, water in the tissue fluids causes the polymer to precipitate and trap the drug in a solid implant. The drug encapsulated within the implant is then released in a controlled manner as the 15 polymer matrix biodegrades with time.

Pharmaceutical compositions for use in the present invention may also be administered topically, (intra)dermally, or transdermally to the skin or mucosa. Typical formulations for this purpose include gels, hydrogels, lotions, solutions, 20 creams, ointments, dusting powders, dressings, foams, films, skin patches, wafers, implants, sponges, fibers, bandages, and microemulsions. Liposomes may also be used. Typical carriers include alcohol, water, mineral oil, liquid petrolatum, white petrolatum, glycerin, polyethylene glycol, and propy- 25 lene glycol. Penetration enhancers may be incorporatedsee, e.g., Finnin and Morgan: J. Pharm. Sci. 88(10): 955-958, (1999). Other means of topical administration include delivery by electroporation, iontophoresis, phonophoresis, sonophoresis, and microneedle or needle-free injection for 30 example using the systems sold under the trademarks POW-DERJECTTM, and BIOJECTTM.

Methods of formulation are well known in the art and are disclosed, for example, in Remington: The Science and Practice of Pharmacy, Mack Publishing Company, Easton, Pa., 35 20th edition, ISBN: 0683306472 (2000). The compositions and agents provided herein may be administered according to the methods of the present invention in any therapeutically effective dosing regimen. The dosage amount and frequency are selected to create an effective level of the agent without 40 harmful effects. The effective amount of a compound of the present invention will depend on the route of administration, the type of warm-blooded animal being treated, and the physical characteristics of the specific warm-blooded animal under consideration. These factors and their relationship to 45 determining this amount are well known to skilled practitioners in the medical arts. This amount and the method of administration can be tailored to achieve optimal efficacy but will depend on such factors as weight, diet, concurrent medication and other factors which those skilled in the medical arts 50 will recognize.

In particular embodiments, the amount of a composition or agent administered will generally range from a dosage of from about 0.1 to about 100 mg/kg/day, and typically from about 0.1 to 10 mg/kg where administered orally or intrave- 55 nously. In particular embodiments, a dosage is 5 mg/kg or 7.5 mg/kg. In various embodiments, the dosage is about 50-2500 mg per day, 100-2500 mg/day, 300-1800 mg/day, or 500-1800 mg/day. In one embodiment, the dosage is between about 100 to 600 mg/day. In another embodiment, the dosage 60 is between about 300 and 1200 mg/day. In particular embodiments, the composition or agent is administered at a dosage of 100 mg/day, 240 mg/day 300 mg/day, 600 mg/day, 1000 mg/day, 1200 mg/day, or 1800 mg/day, in one or more doses per day (i.e., where the combined doses achieve the desired daily dosage). In related embodiments, a dosage is 100 mg bid, 150 mg bid, 240 mg bid, 300 mg bid, 500 mg bid, or 600

138

mg bid. In various embodiments, the composition or agent is administered in single or repeat dosing. The initial dosage and subsequent dosages may be the same or different.

In certain embodiments, a composition or agent is administered in a single dosage of 0.1 to 10 mg/kg or 0.5 to 5 mg/kg. In other embodiments, a composition or agent is administered in a dosage of 0.1 to 50 mg/kg/day, 0.5 to 20 mg/kg/day, or 5 to 20 mg/kg/day.

In certain embodiments, a composition or agent is administered orally or intravenously, e.g., by infusion over a period of time of about, e.g., 10 minutes to 90 minutes. In other related embodiments, a composition or agent is administered by continuous infusion, e.g., at a dosage of between about 0.1 to about 10 mg/kg/hr over a time period. While the time period can vary, in certain embodiments the time period may be between about 10 minutes to about 24 hours or between about 10 minutes to about three days.

In particular embodiments, an effective amount or therapeutically effective amount is an amount sufficient to achieve a total concentration of the composition or agent in the blood plasma of a subject with a C_{max} of between about 0.1 µg/ml and about 20 μ g/ml or between about 0.3 μ g/ml and about 20 μg/ml. In certain embodiments, an oral dosage is an amount sufficient to achieve a blood plasma concentration (C_{max}) of between about 0.1 µg/ml to about 5 µg/ml or between about 0.3 μg/ml to about 3 μg/ml. In certain embodiments, an intravenous dosage is an amount sufficient to achieve a blood plasma concentration (C_{max}) of between about 1 $\mu g/ml$ to about 10 μ g/ml or between about 2 μ g/ml and about 6 μ g/ml. In a related embodiment, the total concentration of an agent in the blood plasma of the subject has a mean trough concentration of less than about 20 µg/ml and/or a steady state concentration of less than about 20 µg/ml. In a further embodiment, the total concentration of an agent in the blood plasma of the subject has a mean trough concentration of less than about 10 μg/ml and/or a steady state concentration of less than about 10 $\mu g/ml$.

In yet another embodiment, the total concentration of an agent in the blood plasma of the subject has a mean trough concentration of between about 1 ng/ml and about 10 μ g/ml and/or a steady state concentration of between about 1 ng/ml and about 10 μ g/ml. In one embodiment, the total concentration of an agent in the blood plasma of the subject has a mean trough concentration of between about 0.3 μ g/ml and about 3 μ g/ml and/or a steady state concentration of between about 0.3 μ g/ml and about 3 μ g/ml and about 3 μ g/ml and about 3 μ g/ml.

In particular embodiments, a composition or agent is administered in an amount sufficient to achieve in the mammal a blood plasma concentration having a mean trough concentration of between about 1 ng/ml and about 10 mg/ml and/or a steady state concentration of between about 1 ng/ml and about 10 mg/ml. In related embodiments, the total concentration of the agent in the blood plasma of the mammal has a mean trough concentration of between about 0.3 µg/ml and about 3 µg/ml and/or a steady state concentration of between about 0.3 µg/ml and about 3 µg/ml.

In particular embodiments of the present invention, the effective amount of a composition or agent, or the blood plasma concentration of composition or agent is achieved or maintained, e.g., for at least 15 minutes, at least 30 minutes, at least 45 minutes, at least 60 minutes, at least 90 minutes, at least 2 hours, at least 3 hours, at least 4 hours, at least 8 hours, at least 12 hours, at least 24 hours, at least 48 hours, at least 3 days, at least 4 days, at least 5 days, at least 6 days, at least one week, at least 2 weeks, at least one month, at least 2 months, at least 4 months, at least 6 months, at least one year, at least 2 years, or greater than 2 years.

In certain polypeptide-based embodiments, the amount of polypeptide administered will typically be in the range of about 0.1 µg/kg to about 0.1 mg/kg to about 50 mg/kg of patient body weight. Depending on the type and severity of the disease, about 0.1 μg/kg to about 0.1 mg/kg to about 50 5 mg/kg body weight (e.g., about 0.1-15 mg/kg/dose) of polypeptide can be an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. For example, a dosing regimen may comprise administering an 10 initial loading dose of about 4 mg/kg, followed by a weekly maintenance dose of about 2 mg/kg of the polypeptide, or about half of the loading dose. However, other dosage regimens may be useful. A typical daily dosage might range from about 0.1 μg/kg to about 1 μg/kg to 100 mg/kg or more, 15 depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs.

In particular embodiments, the effective dosage achieves 20 the blood plasma levels or mean trough concentration of a composition or agent described herein. These may be readily determined using routine procedures.

Embodiments of the present invention, in other aspects, provide kits comprising one or more containers filled with 25 one or more of the polypeptides, polynucleotides, antibodies, multiunit complexes, compositions thereof, etc., of the invention, as described herein. The kits can include written instructions on how to use such compositions (e.g., to modulate cellular signaling, angiogenesis, cancer, inflammatory conditions, diagnosis etc.).

The kits herein may also include a one or more additional therapeutic agents or other components suitable or desired for the indication being treated, or for the desired diagnostic application. An additional therapeutic agent may be contained in a second container, if desired. Examples of additional therapeutic agents include, but are not limited to antineoplastic agents, anti-inflammatory agents, antibacterial agents, antiviral agents, angiogenic agents, etc.

The kits herein can also include one or more syringes or ⁴⁰ other components necessary or desired to facilitate an intended mode of delivery (e.g., stents, implantable depots, etc.).

All publications, patent applications, and issued patents cited in this specification are herein incorporated by reference 45 as if each individual publication, patent application, or issued patent were specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims. The following examples are provided by 55 way of illustration only and not by way of limitation. Those of skill in the art will readily recognize a variety of noncritical parameters that could be changed or modified to yield essentially similar results.

XIV. Examples

General Methods

Unless indicated otherwise in the examples below, the 65 following general methods for gene optimization, small and large scale protein expression, protein purification, transcrip-

140

tional profiling and screening were used to make and characterize the AARS polypeptides described in the Examples below.

Gene Synthesis and Cloning into Expression Vectors

Polynucleotide sequences encoding epitope tagged versions of the AARS polypeptides were codon optimized and cloned into bacterial expression vectors using the methods listed below.

In method (1), *E. coli* codon-optimized DNA (Welch et al., PLoS ONE 4(9): e7007 doi:10.1371/journal.pone.0007002) encoding each AARS polypeptide is synthesized by DNA 2.0 (Menlo Park, Calif.), and two versions of each AARS polypeptide are synthesized, containing either an N-terminal, or C-terminal combined epitope tag comprising both a six histidine tag and V5 epitope tag.

DNA encoding the C-terminally tagged AARS polypeptides is synthesized with a 5' extension encoding a rbs (underlined below) and NdeI restriction site that either recapitulates the predicted native start codon for the AARS polypeptide, or inserts an ATG in frame with the predicted AARS polypeptide open reading frame, (AGGAGATAAAACATATG) (SEQ. ID. No. 3). In different embodiments, the ribosome binding site can comprise the sequences "AGGAGGTAAAACAT" (SEQ. ID. No. 4), "AGGAGATAAAACAT" (SEQ. ID. No. 5), or GAAGGAGATATACAT (SEQ. ID. No. 6). At the 3' end of the predicted AARS polypeptide open reading frame, a 3' extension is synthesized which encodes in 5' to 3' order, a V5 epitope tag, six histidine tag, two stop codons and a XhoI site, (GGTAAGCCTATCCCTAACCCTCTCCTCG-

GTCTCGATTCTACGCACCACCATC ATCACCATTAAT-GACTCGAG) (SEQ. ID. No. 7), which is fused in frame to the predicted AARS polypeptide open reading frame. If the AARS polypeptide included a predicted native stop codon, this was deleted.

Synthesized DNA sequences encoding the AARS polypeptides are subcloned into pJExpress411 vector (DNA 2.0). After sequencing to confirm synthesis of the correct product, expression vectors are transformed into bacteria for protein expression as described more fully below.

In method (2), E. coli codon-optimized DNA (Ermolaeva M D (2001) Curr. Iss. Mol. Biol. 3 (4) 91-7) encoding each AARS polypeptide is synthesized by GENEWIZ (South Plainfield, N.J.). Each polynucleotide sequence encoding the AARS polypeptide was synthesized with short 5' and 3'
 extensions comprising unique restriction sites for subsequent cloning.

Specifically a BamHI restriction site was inserted at the 5' end of the predicted open reading frame. In cases where the AARS polypeptide comprises a predicted native initiation methionine residue (ATG), or the first amino acid residue of the predicted AARS polypeptide is Met, this was deleted. Additionally a XhoI restriction site was inserted at the 3' end

of the predicted open reading frame. In cases where the AARS polypeptide comprises a predicted native stop codon, this was deleted.

After restriction digestion, the resulting DNA sequences are subcloned into modified pET-24b vectors (EMD, Gibbstown, N.J.) containing either an N-terminal(pET24b_N-6XHis/V5), or C-terminal (pET24b_C-V5/6XHis) combined epitope tag comprising both a six histidine and V5 epitope tag (vector modification by GENEWIZ, (South Plainfield, N.J.).

After restriction digestion, and cloning, the DNA encoding 10 the N-tagged AARS polypeptide is cloned into the N-tagged vector (pET24b_N-6XHis/V5), which comprises a 5' DNA sequence encoding six histidines and a V5 epitope tag, (CATATGCATCATCATCATCATCACGG-

TAAGCCTATCCCTAACCCTCTCCTCG GTCTCGATTC- 15 TACGGGATCC) (SEQ. ID. No. 8), in frame with an initiation codon (ATG) embedded within the NdeI restriction site. This 5' extension is fused to the predicted AARS polypeptide open reading frame through a short 2 amino acid linker (GS).

At the 3' end of the predicted open reading frame, the DNA 20 encoding the N-tagged AARS polypeptide comprises a DNA sequence encoding a 2 amino acid extension (LE) followed by two termination codons (CTCGAGTAATGA) (SEQ. ID. No. 9).

After restriction digestion, and cloning, the DNA encoding 25 the C-tagged AARS polypeptide cloned into the C-tagged vector (pET24b_C-V5/6XHis), comprises a 5' sequence encoding an initiation codon (ATG) embedded within the NdeI restriction site which is fused to the predicted AARS polypeptide open reading frame through a short 2 amino acid 30 linker (GS), (CATATGGGATCC) (SEQ. ID. No. 10).

At the 3' end of the predicted open reading frame, the DNA encoding the C-tagged AARS polypeptide comprises a 3' DNA sequence encoding a short linker 2 amino acid linker (LE) followed by a V5 epitope tag followed by six histidines, 35 and two stop codons, CTCGAGGGTAAGCCTATC-CCTAACCCTCTCCTCGGTCTCGATTCTACGCACC ACCACCACCACCACTAATGA (SEQ. ID. No. 11).

AARS Polypeptide Expression, Purification and Biophysical Characterization 40

6xHis-tagged AARS polypeptides are expressed in bacteria in a medium-throughput format and/or in larger scale flask cultures depending upon the amount of protein required. AARS polypeptides are purified using affinity and ion exchange chromatography as described below, and as specified for specific experiments.

Bacterial Cultures:

100 ng of expression vector comprising codon optimized DNA encoding each AARS polypeptide (as described above) is transformed into BL21(DE3) (EMD chemicals, cat. no. 50 69450) competent E. coli bacteria at 42° C. for 30 seconds in PCR plates. C41(DE3) (Lucigen, cat. no. 60442), HMS174 (DE3) (EMD chemicals, cat. no. 69453) and Origami2(DE3) (EMD chemicals, cat. no. 71345) strains are also evaluated. The plates are placed on ice for 2 minutes and 100 µL of SOC 55 medium is added, followed by a 1-hour incubation at 37° C. 5 mL of auto-induction medium (EMD chemicals, cat. no. 71491) supplemented with kanamycin (100 µg/mL) is added into each well of a 24-well block (Qiagen, cat. no. 19583). The transformation reactions are added to the individual 60 wells, the block is sealed with adhesive film (VWR, cat. no 60941-078) and incubated overnight at 250 rpm in a 37° C. shaker. When low temperature (25° C.) conditions are used, incubation is carried out for 48 hours instead.

For larger scale expression, 200 mL of auto-induction 65 medium supplemented with kanamycin ($100\,\mu\text{g/mL}$) is added into 500-mL Erlenmeyer flasks with vent caps (Corning, cat.

142

no. 431401). The transformation reactions are added to the individual flasks and incubated for 30 hours at 250 rpm in a 37° C. shaker.

Protein Isolation:

After the culture reached stationary phase (typical OD₆₀₀ of 3-6), the blocks are centrifuged at 3600×g for 10 minutes. The medium is carefully aspirated and the blocks are frozen at -80° C. or -20° C. for 10 minutes. The blocks are then allowed to thaw at room temperature and 1 mL lysis buffer (100 mL Bugbuster supplemented with 200 µL lysonase (EMD chemicals, cat. no 71370) and protease inhibitors "complete mini EDTA-free" (Roche, cat. no. 11 836 170 001)) is added into each well. The pellets are resuspended by repeat pipetting until no clump is visible and transferred to eppendorf tubes, followed by a 10-20 minute incubation on a shaker at room temperature. After centrifugation at 16,000 g for 10 minutes at 4° C., the lysates are loaded onto a Turbo-Filter 96 Plate included in the Ni-NTA Superflow 96 BioRobot Kit (Qiagen, cat. no. 969261) and centrifuged at 500 g for 5-10 minutes.

For larger scale expression, the stationary phase culture is transferred into 500-mL bottles and centrifuged at 6,000 g for 10 minutes. The medium is decanted and the pellet is stored at -80° C. or -20° C. before further processing. The pellet is then allowed to thaw at room temperature and 20 mL lysis buffer is added into each bottle. The pellets are resuspended by repeat pipetting until no clump is visible, followed by 20 minute incubation on a shaker at room temperature. After centrifugation at 10,000 g for 30 minutes at 4° C., the lysates are transferred to clean tubes or bottles. If trace amounts of debris are carried over during the transfer, the sample is centrifuged again or passed through a 0.45 μm cellulose acetate membrane (Corning, cat. no. 430314) for further clarification.

Affinity Purification:

A QIAFilter 96 Plate is loaded with 200 μL Ni-NTA Superflow slurry included in the Ni-NTA Superflow 96 BioRobot Kit and the resin is equilibrated by adding 600 μL binding buffer (20 mM sodium phosphate, 500 mM sodium chloride and 10 mM imidazole, pH 7.5). A vacuum of -15 in. Hg is applied until all the buffer has passed through the resin. The clarified cell lysates from the previous step are then loaded onto the QIAFilter® 96 Plate and allowed to bind for 5 minutes. A vacuum of -3 in. Hg is applied for approximately 5 minutes until all the samples have passed through the resin. The resin is then washed with 1 mL binding buffer, followed by two washes with 1 mL binding buffer containing 0.1% Triton X-100. The resin is then washed 10 times with 1 mL binding buffer without Triton X-100. The bound 6xHistagged AARS polypeptides are eluted with 450 µL elution buffer (20 mM sodium phosphate, 500 mM sodium chloride and 500 mM imidazole, pH 7.5) and stored at 4° C.

For larger scale expression, an empty disposable column "Poly-Prep" (Bio-Rad, cat. no. 731-1550) is loaded with 1 mL Ni-NTA Superflow slurry (Qiagen, cat. no. 30450) and the 0.5 mL resin is equilibrated by adding 5 mL binding buffer. The clarified cell lysate from the previous step is then loaded onto the column and allowed to pass through by gravity. The resin is first washed with 50 mL binding buffer plus 0.1% Triton X-100, then washed with 50 mL binding buffer without Triton X-100. The bound 6xHis-tagged AARS polypeptides are eluted with 2 mL elution buffer and stored at 4° C.

Desalting and Polishing Steps:

For AARS polypeptides with a molecular mass of >10 kDa, the Omega 10K membrane of an AcroPrep 96 filter plate (Pall, cat. no. 5034) is rinsed with 20 µL 1×PBS and the plate

is placed onto a vacuum manifold (>10 in Hg) until all the liquid passes through. The eluates from the previous step (Ni-NTA) are dispensed into each well and the vacuum applied until all the liquid passes through. These steps are repeated until the total eluate volume (450 µL) has been 5 processed. AARS polypeptides are recovered by adding 180 μL of 1×PBS pH 7.4 to each well, pipetting up and down 10 times carefully and then transferred to a clean block. This step is repeated to yield a total volume of 360 μL per well and the block is stored at 4° C. For AARS polypeptides with a 10 molecular mass of <10 kDa, the eluates from Ni-NTA are loaded onto an Amicon Ultra-15 Centrifugal Filter Unit with Ultracel-3 membrane (Millipore, cat. no. UFC900308), followed by the addition of 10 mL 1×PBS and a centrifugation at 3,600 g for 10-30 minutes until the volume is less than 360 µL. 15 The samples are recovered and 1×PBS is added to a final volume of 360 μL.

In order to remove endotoxins, an AcroPrep Advance filter plate with Mustang Q membrane (Pall, cat. no. 8171) is rinsed with 300 $\,\mu L$ of 1×PBS and centrifuged at 1,000 g for 5 20 minutes to remove the buffer. The desalted AARS polypeptides (360 $\,\mu L$ /well) are added to the filter plate and incubated on a shaker for 5-10 minutes. The plate is then centrifuged at 1,000 g for 5-10 minutes and the flow through fractions containing the AARS polypeptides are collected and stored at 4° 25 C.

For larger scale expression, the eluates from Ni-NTA are loaded onto an Amicon Ultra-15 Centrifugal Filter Unit with Ultracel-3 or Ultracel-10 membrane (Millipore, cat. no. UFC900308 or UFC901008) depending on the molecular $_{30}$ weight of the AARS polypeptide and then centrifuged at $_{3,600}$ g for 10-30 minutes until the volume is reduced to 250 μL . The samples are mixed in 10 mL 1×PBS, pH7.4 and centrifuged again at 3,600 g for 10-30 minutes until the volume is about 250 μL . This step is repeated one more time, the $_{35}$ supernatants are recovered and 1×PBS is added to a final volume of 1.5 mL.

In order to remove endotoxins, a Sartobind Q 5 strong anion exchanger membrane (Sartorius, cat. no. Q5F) is flushed with 1 mL 1×PBS and the AARS polypeptides are 40 slowly passed through the membrane using a plastic syringe. The flow through fraction containing the AARS polypeptides is collected in a 96-deep well block that is sealed and stored at 4° C.

6xHis-tagged AARS polypeptides expressed in bacteria 45 and found in inclusion bodies are purified using affinity chromatography and a series of refolding steps, as described below.

Bacterial Cultures:

100 ng of plasmid encoding each AARS polypeptide is 50 transformed into BL21(DE3) (EMD chemicals, cat. no. 69450) or C41(DE3) (Lucigen, cat. no. 60442) competent E. coli bacteria at 42° C. for 30 seconds in PCR plates. The plates are placed on ice for 2 minutes and 100 μ L of SOC medium is added, followed by a 1-hour incubation at 37° C. 5 mL of 55 auto-induction medium (EMD chemicals, cat. no. 71491) supplemented with kanamycin (100 μ g/mL) is added into each well of a 24-well block (Qiagen, cat. no. 19583). The transformation reactions are added to the individual wells, the block is sealed with adhesive film (VWR, cat. no 60941-078) 60 and incubated overnight at 250 rpm in a 37° C. shaker.

For larger scale expression, 200 mL of auto-induction medium supplemented with kanamycin ($100\,\mu\text{g/mL}$) is added into 500-mL Erlenmeyer flasks with vent caps (Corning, cat. no. 431401). The transformation reactions are added to the 65 individual flasks and incubated for 30 hours at 250 rpm in a 37° C. shaker.

144

Isolation:

After the cultures reach stationary phase (typical OD_{600} of 3-6), the blocks are centrifuged at 3,600×g for 10 minutes. The medium is carefully aspirated and the blocks are frozen at -80° C. or -20° C. for 10 minutes. The blocks are then allowed to thaw at room temperature and 1 mL lysis buffer (100 mL Bugbuster supplemented with 200 ul lysonase (EMD chemicals, cat. no 71370) and protease inhibitor "complete mini EDTA-free" (Roche, cat. no. 11 836 170 001)) is added into each well. The pellets are resuspended by repeat pipetting until no clump is visible and transferred to eppendorf tubes, followed by a 10-20 minute incubation on a shaker at room temperature. After centrifugation at 16,000×g for 10 minutes at 4° C., the soluble lysates are discarded and the inclusion bodies are thoroughly resuspended in denaturing binding buffer (20 mM sodium phosphate, 500 mM sodium chloride, 6 M guanidine hydrochloride, 10 mM imidazole, pH 7.5). The samples are centrifuged at 16,000 g for 10 minutes and the supernatants loaded onto a TurboFilter 96 Plate included in the Ni-NTA Superflow 96 BioRobot Kit (Qiagen, cat. no. 969261) followed by centrifugation at 500 g for 5-10 minutes. The filtrates are collected in a clean 96-well block (Greiner, cat. no. 780286).

For larger scale expression, the stationary phase culture is transferred into 500-mL bottles and centrifuged at 6,000 g for 10 minutes. The medium is decanted and the pellet is stored at -80° C. or -20° C. before further processing. The pellet is then allowed to thaw at room temperature and 20 mL lysis buffer is added into each bottle. The pellets are resuspended by repeat pipetting until no clump is visible, followed by 20 minute incubation on a shaker at room temperature. After centrifugation at 10,000 g for 30 minutes at 4° C., the soluble lysates are discarded and the insoluble inclusion bodies thoroughly resuspended in denaturing binding buffer.

Affinity Purification:

A QIAFilter 96 Plate is loaded with 200 µL Ni-NTA Superflow slurry included in the Ni-NTA Superflow 96 BioRobot Kit and the resin is equilibrated by adding 600 uL denaturing binding buffer (see above). A vacuum of -15 in. Hg is applied until all of the buffer passes through the resin. The clarified denatured samples from the previous step are then loaded onto the QIAFilter® 96 Plate and allowed to bind for 5 minutes. A vacuum of approximately 3 inches of mercury is applied for approximately 5 minutes until all the samples pass through the resin. The resin is then washed with 1 mL denaturing binding buffer, followed by five washes with 1 mL denaturing binding buffer containing 0.1% Triton X-100. The resin is then washed 15 times with 1 mL denaturing binding buffer without Triton X-100. The bound 6xHis-tagged AARS polypeptides are then eluted with 450 µL denaturing elution buffer (20 mM sodium phosphate, 500 mM sodium chloride, 6 M guanidine hydrochloride and 500 mM imidazole, pH 7.5) and stored at 4° C.

For larger scale expression, an empty disposable column "Poly-Prep" (Bio-Rad, cat. no. 731-1550) is loaded with 1 mL Ni-NTA Superflow slurry (Qiagen, cat. no. 30450) and the 0.5 mL resin is equilibrated by adding 5 mL denaturing binding buffer (see above). The denatured inclusion bodies from the previous step are then loaded onto the column and allowed to pass through by gravity. The resin is first washed with 50 mL denaturing binding buffer plus 0.1% Triton X-100, then washed with 50 mL denaturing binding buffer without Triton X-100. The bound 6xHis-tagged AARS polypeptides are eluted with 2 mL denaturing elution buffer and stored at 4° C.

Refolding:

For AARS polypeptides >10 kDa, the Omega 10K membrane of an AcroPrep 96 filter plate (Pall, cat. no. 5034) is rinsed with 20 µL 1×PBS and the plate is placed onto a vacuum manifold (>10 in. Hg) until all the liquid passes through. The eluates from the previous step (Ni-NTA) are dispensed into each well and the vacuum applied until all the liquid passes through. These steps are repeated until the total eluate volume (450 μL) has been processed. AARS polypeptides are recovered by adding 200 µL of refolding buffer containing 50 mM Tris, 250 mM sodium chloride, 10 mM potassium chloride, 2 mM magnesium chloride, 2 mM calcium chloride, 400 mM sucrose, 500 mM arginine, 1 mM DTT and 0.01% polysorbate 80, pH 7.4) to each well, pipetting up and down 10 times carefully, and then transferred to a clean block. This step is repeated to yield a total volume of 400 μL per well and the block is placed on the shaker overnight at 4° C. For AARS polypeptides <10 kDa, the eluates from Ni-NTA are loaded onto an Amicon Ultra-15 Centrifu- 20 gal Filter Unit with Ultracel-3 membrane (Millipore, cat. no. UFC900308), followed by the addition of 10 mL refolding buffer and a centrifugation at 3,600 g for 10-30 minutes until the volume is less than $400\,\mu L$. The samples are recovered and extra refolding buffer is added to a final volume of 400 µL. 25 The samples are transferred to a 96-well block, sealed with film and placed on a shaker overnight at 4° C.

For larger scale cultures, the eluates from Ni-NTA are loaded onto an Amicon Ultra-15 centrifugal filter unit with Ultracel-3 or Ultracel-10 membrane (Millipore, cat. no. 30 UFC900308 or UFC901008 depending on the molecular weight of the AARS polypeptide) and then centrifuged at 3,600 g for 10-30 minutes until the volume is reduced to about 500 μL. For AARS polypeptides with pI>7, the samples are diluted 20-fold in the following buffer: 50 mM sodium 35 acetate, 10 mM sodium chloride, 0.4 mM potassium chloride, 1 mM EDTA, 400 mM sucrose, 500 mM arginine, 1 mM DTT and 0.01% polysorbate 80, pH 6.0. For AARS polypeptides with pI<7, the samples are diluted 20-fold in the following buffer: 50 mM Tris, 250 mM sodium chloride, 10 mM potas- 40 sium chloride, 2 mM magnesium chloride, 2 mM calcium chloride, 400 mM sucrose, 500 mM arginine, 1 mM DTT and 0.01% polysorbate 80, pH 8.0. The samples are incubated on a shaker at 4° C. overnight.

Desalting and Polishing Steps:

After overnight incubation, the 96-well block is centrifuged at 3,600 g to remove any potential aggregates. The supernatants are then subjected to buffer exchange with 1×PBS (Invitrogen, cat. no. 10010). For AARS polypeptides >10 kDa, the Omega 10K membrane of an AcroPrep 96 filter 50 plate is rinsed with 20 µL 1×PBS and the plate is placed onto a vacuum manifold (>10 in. Hg) until all the liquid passes through. The samples in the refolding buffer are dispensed into each well and the vacuum applied until all the liquid passes through. These steps are repeated until the total sample 55 volume (400 µL) has been processed. AARS polypeptides are recovered by adding 180 μL of 1×PBS pH 7.4 to each well, pipetting up and down 10 times carefully, and then transferred to a clean block. This step is repeated to yield a total volume of 360 µL per well and the block is stored at 4° C. For AARS 60 polypeptides <10 kDa, the refolded samples are loaded onto an Amicon Ultra-15 Centrifugal Filter Unit with Ultracel-3 membrane (Millipore, cat. no. UFC900308) followed by the addition of 10 mL 1×PBS and centrifugation at 3,600 g for 10-30 minutes until the volume is less than 360 μ L. The 65 samples are recovered and 1×PBS is added to a final volume of 360 µL.

146

In order to remove endotoxins, an AcroPrep Advance filter plate with Mustang Q membrane (Pall, cat. no. 8171) is rinsed with 300 μL of 1×PBS and centrifuged at 1,000 g for 5 minutes to remove the buffer. The AARS polypeptides (360 $\mu L/well)$ are added to the filter plate and incubated on a shaker for 5-10 minutes. The plate is then centrifuged at 1,000 g for 5-10 minutes and the flow through fractions containing the AARS polypeptides are collected and stored at 4° C.

For larger scale cultures, after overnight incubation, the refolded samples are centrifuged at 10,000 g for 10 minutes to remove any insoluble aggregates. The supernatant is loaded onto an Amicon Ultra-15 Centrifugal Filter Unit and centrifuged at 3,600 g until the volume is reduced to 250 μL . The samples are mixed in 10 mL 1×PBS and centrifuged again at 3,600 g for 10-30 minutes until the volume is about 250 μL . Note that the pH of 1×PBS is adjusted to match the pH of the refolding buffer, either pH 6.0 or pH 8.0. This step is repeated one more time, the supernatants are recovered and 1×PBS is added to a final volume of 1.5 mL.

In order to remove endotoxins, a Sartobind Q 5 strong anion exchanger membrane (Sartorius, cat. no. Q5F) is flushed with 1 mL 1×PBS and the AARS polypeptides are slowly passed through the membrane using a plastic syringe. The flow through fraction containing the AARS polypeptides is collected in a 96-deep well block that is sealed and stored at 4° C.

Biophysical Characterization:

All purified AARS polypeptides are analyzed by SDS-PAGE, their concentration determined based on A_{280} and calculated extinction coefficient (ProtParam on ExPASy server). Endotoxin levels are measured by the QCL-1000 Endpoint Chromogenic LAL assay (Lonza, cat. no. 50-648U) according to the manufacturer's instructions.

Dynamic Light Scattering:

A Wyatt Technology DynaPro 99 instrument and the temperature controller (20° C.) are warmed up for 15 minutes before the experiment followed by connection of the Dynamics software to the instrument. The acquisition time is set to 10 seconds for multiple acquisitions and the laser power is set to 100%. The quartz cuvette is washed thoroughly with deionized water and methanol before the addition of the protein sample (15 µL at a concentration of approximately 1 mg/mL in PBS). Air bubbles are removed by tapping the cuvette before it is inserted into the holder with the frosted side to the left. If the intensity is too high (warning message shown on the screen), the sample is further diluted with PBS until the intensity is decreased to a normal range. The data collected include hydrodynamic radius, polydispersity, predicted average molecular weight, percentage of intensity and percentage of mass.

Size Exclusion Chromatography:

The protein sample is diluted to a concentration of about 5-10 mg/mL in PBS before being loaded into a $100\,\mu\text{L}$ sample loop on the General Electric AKTA FPLC. The Superdex 200 10/300~GL size exclusion column (General Electric, cat. no. 17-5175-01) is used for separation. The column is first equilibrated with 1.5 column volume (CV) of 1×PBS buffer, followed by sample injection. The column is run in 1 CV of 1×PBS buffer (isocratic flow) with absorbance at 280 nm monitoring. The peak area is integrated and the percentage calculated with the Unicorn software. The elution volume is used to estimate the molecular weight based on comparison with gel filtration calibration kits (General Electric, cat. no. 28-4038-41 and 28-4038-42).

Protein Recovery Upon Storage at High Concentration:

10 μL of the AARS polypeptides concentrated to ≥10 mg/mL using an Amicon Ultra-15 filter unit (Millipore, cat.

no. UFC901024 or UFC900324 depending on molecular weight) are transferred to a clean microcentrifuge tube. The sample is stored at room temperature for one week followed by centrifugation at 16,000 g for 10 minutes to pellet any precipitates. The concentration of the supernatant is determined by a Bradford protein assay and compared to the concentration measured prior to the week-long exposure to room temperature. The recovery is expressed as percentage of the starting concentration.

Characterization of AARS Polypeptides by LC-MS:

Purified AARS polypeptides (1 mg/mL) are diluted 1:10 into 0.1% formic acid and 0.6 µg protein is loaded with a Dionex autosampler onto a C4 capillary column. The capillary column is prepared by cutting 150 mm of fused silica tubing (0.36 mm OD by 0.1 mm ID, Polymicro Technologies, 15 cat. no. 2000023). The capillary is pulled at one end with a Suter Instrument Laser Fiber Puller and cut with a fused silica cutter to generate a 5 µm tip. The capillary is packed to the length of 75 mm with C4 resin (5 μm, 300 Å, Michrom, cat. no. PM5/64300/00) using pressure bomb. The LC-MS analy- 20 sis is performed on an ThermoFisher LTQ ion trap mass spectrometer coupled to a Dionex Ultimate 3000 HPLC system. The analyte is eluted from the column using a 35-minute gradient of 5-70% acetonitrile in 0.1% formic acid at a flow rate of 0.9 µL/min. The LTQ is operated on a full MS scan 25 mode (300-2,000 m/z) with a spray voltage of 2.5 kV.

Data collection and analysis: raw mass spectrometry data are stored in RAW files generated by XCalibur running on the LTQ XL mass spectrometer. The MS spectra of the major peaks on the chromatograph are further analyzed with ThermoFisher deconvoluting algorithm ProMass to obtain the AARS polypeptide molecular weights.

Functional Analysis of AARS Polypeptides Transcriptional Profiling

Background and Therapeutic Relevance:

In addition to traditional target identification techniques, genomic tools have recently emerged as important approaches to aid in elucidating the mechanism of action of AARS polypeptides and can provide direct insight into therapeutic relevance early in the drug discovery process. To facilitate an understanding of potential therapeutic utility, primary human cell types are cultured with AARS polypeptides and transcriptional profiling is assessed at two separate time points following incubation with AARS polypeptides.

The cell types chosen for transcriptional profiling are based 45 on the pluripotent capabilities of the cells in question and potential to identify AARS polypeptides of direct therapeutic value. For example, Mesenchymal stem cells (MSCs) can differentiate into osteogenic, adipogenic, chondrogenic, myocardial, or neural lineages when exposed to specific 50 stimuli, making them attractive for understanding the potential relevance of the AARS polypeptides to a broad range of cell types, and diseases.

In addition to supporting hematopoietic cells, marrow stromal cells can also be induced to differentiate into cells of 55 different connective tissue lineage, such as bone, cartilage, and fat. The potential of Human Mesenchymal stem cells (hMSCs) to maintain multipotency and proliferate extensively in vitro provides new avenues for cell-based therapy in the restoration of damaged or diseased tissue. Recent reports also indicate that HMSCs are capable of cell fate crossing germ layer boundaries. In addition to differentiating into multi-lineages of the mesoderm, these cells can also differentiate into neurons of ectodermal origin and hepatocyte-like cells of endodermal origin. During the process of differentiation, these cells may modify expression patterns of certain lineage specific transcripts.

148

Accordingly the ability of specific AARS polypeptides to modulate specific patterns of genes in HMSCs in a time dependent manner demonstrates that these proteins play potentially significant roles in a broad array of differentiation pathways, as well as diseases and disorders resulting from the dysfunction, or deterioration of these processes, or the corresponding cell types. Moreover AARS polypeptides with the ability to modulate gene transcription in MSCs have significant therapeutic utility to enable the in vitro or in vivo modulation of hematopoiesis, neurogenesis, myogenesis, osteogenesis, and adipogenesis, as well as in a broad range of disorders and diseases, including for example inflammatory responses, autoimmunity, cancer, neuronal degeneration, muscular dystrophy, osteoporosis, and lipodystrophy.

Human Skeletal Muscle Cells (HSkMC) can undergo differentiation to exhibit actin and myosin myofilaments, and have been used in the study of genetic muscular diseases such as Malignant Hyperthermial. HSkMC also have the potential to act as a cardiac graft, mending damage to the heart. Recently, cultured Human Skeletal Muscle cells have been used in micro gravity experiments to study the effects of low gravity environments on Human Skeletal Muscle.

Accordingly the ability of specific AARS polypeptides to

25 modulate specific patterns of genes in HSkMC in a time
dependent manner demonstrates that these proteins play
potentially significant roles in the processes of myogenesis,
as well as diseases and disorders resulting from the dysfunction, or deterioration of these processes as well as muscle cell
30 development or metabolism. Accordingly AARS polypeptides with the ability to modulate gene transcription in muscle
cells have therapeutic utility in a broad range of diseases
including for example, the treatment of metabolic disease,
cachexia, various muscle wasting conditions, as well as mus35 culoskeletal diseases.

Methods:

The ability of AARS polypeptides to modulate gene expression is assessed using a high-throughput microfluidic real-time quantitative PCR (RT-qPCR) approach (Fluidigm Corporation). (See Petriv et al., (2010) PNAS (doi/10.1073/pnas.1009320107) in Human Marrow Stromal Cells (HMSC) and Human Skeletal Muscle Cells (HSkMC). In the experiments reported here, Human HSkMC (Cat #150-05f) and HMSC (Cat #492-05f) were purchased from Cell Applications. HMSC cells are cryopreserved at second passage and can be cultured and propagated to 10 population doublings. Here HMSC in the 6th Passage are used. Human Skeletal Muscle Cells (HSkMC) are cryopreserved at second passage and can be cultured and propagated for at least 15 population doublings. In the experiments reported here HSkMC at passage 6 post harvest from normal human donor are used.

In both cases, cells are plated at 50000 cells/mL in 100 µL volume of growth media and exposed to AARS polypeptides at a concentration of 250 nM, or as otherwise indicated below, for 24 hours and 72 hours. Controls include Differentiation media with a standard cocktail to promote (1) Adipogenesis, (2) Osteogenesis, (3) Chondrogenesis and (4) Skeletal muscle myotube formation. Additional controls include untreated wells containing only growth media. Two wells were run for each Differentiation control. Controls: all media was made utilizing DMEM as the basal media. Standard literature was followed and Differentiation media was purchased from Cell Applications. Per the vendor, differentiation media contained the following additives: Skeletal muscle differentiation cocktail: FBS, insulin, glutamine, FGF, EGF; Adipogenesis cocktail: insulin, dexamethasone and IBMX; Osteogenesis cocktail: FBS, dexamethasone, ascorbate 2

phosphate, beta-glycerophosphate; Chondrogenesis cocktail: insulin, ascorbate-2-phosphate, and $TGF-\beta 1$.

Standard protocols for using an ABI (Applied Biosystems, Item # AM1728) TAQMAN® Gene Expression Cells-to-CTTM Kit are utilized to lyse cells and harvest genomic material. An ABI Pre-Amp Mix (Applied Biosystems,

Item#4391128) is used to initiate pre-amplification. Gene specific primers are created using a Primer 3 program and purchased from IDT technologies. Fluidigm profiling arrays (Item # BMK-M-96.96) were used for actual quantitative PCR with standard Fluidigm loading reagents and pipetting devices. Table E1 below lists the genes profiled.

150

TABLE E1

ompiled nique ist	refseq_nt	Full_name_	Synonyms
BCA1	NM 005502	ATP-binding cassette, sub-	ABC-
DC/11	11141_005502	family A (ABC1), member 1	1 ABC1 CERP FLJ14958
		, , , , , , , , , , , , , , , , , , , ,	HDLDT1
			MGC164864 MGC165011
			TGD
CTB	NM_001101	actin, beta	PS1TP5BP1
CTG1	NM_001614	actin, gamma 1	ACT ACTG DFNA20 DFNA26
CVR2B	NM_001106	activin A receptor, type IIB	ACTRIIB ActR-
0.1425	1111_001100	dear in 11 receptor, type 112	IIB MGC116908
POA1	NM_000039	apolipoprotein A-I	MGC117399
RNT	NM_178427	aryl hydrocarbon receptor	HIF-
		nuclear translocator	1beta HIF1B HIF1BETA
			TANGO
4.D	NIM 022000	DCI 2	bHLHe2
AD	NM_032989	BCL2-associated agonist of cell death	BBC2 BCL2L8
CL2	NM_000657	B-cell CLL/lymphoma 2	Bel-2
MP2	NM_001200	bone morphogenetic protein 2	BMP2A
MP4	NM_130851	bone morphogenetic protein 4	BMP2B BMP2B1
			MCOPS6 OFC11
2.5	373.6 oc. 107.1		ZYME
3AR1	NM_004054	complement component 3a	AZ3B C3AR HNFAG09
ASP3	NM_032991	receptor 1 caspase 3, apoptosis-related	CPP32 CPP32B SCA-1
21013	1111_032551	cysteine peptidase	C1132 C1132B BC111
AV1	NM_001753	caveolin 1, caveolae protein,	BSCL3 CGL3 MSTP085
		22 kDa	VIP21
DH5	NM_001795	cadherin 5, type 2 (vascular	7B4 CD144 FLJ17376
ET AD	NIM 002070	endothelium)	CACTICA CROADU
FLAR	NM_003879	CASP8 and FADD-like apoptosis regulator	CASH CASP8AP1 CLARP Casper
		apoptosis regulator	FLAME FLAME-
			1 FLAME1 FLIP
			I-FLICE
			MRIT c-FLIP c-
			FLIPL c-FLIPR
OMB	NIM 000005		c-FLIPS
OMP	NM_000095	cartilage oligomeric matrix protein	EDM1 EPD1 MED MGC131819
		protein	MGC1318191 MGC1497681
			PSACH THBS5
SF1	NM_172212	colony stimulating factor 1	MCSF MGC31930
		(macrophage)	
TGF	NM_001901	connective tissue growth factor	CCN2 HCS24 IGFBP8
			MGC102839
TNNB1	NM_001904	catenin (cadherin-associated	NOV2 CTNNB DKFZp686D02253
	1111_001704	protein), beta 1, 88 kDa	FLJ25606
		. ,, , , ==	FLJ37923
AAM1	NM_014992	dishevelled associated activator	FLJ41657 KIAA0666
		of morphogenesis 1	
LN	NM_001081755	elastin	FLJ38671 FLJ43523
NO1	NM 001428	enolase 1, (alpha)	SVAS WBS WS ENO1L1 MPB1 NNE
101	MWI_001420	спотаве 1, (агриа)	PPH
ABP3	NM_004102	fatty acid binding protein 3,	FABP11 H-
		muscle and heart (mammary-	FABP MDGI O-
		derived growth inhibitor)	FABP
4K	NM_001199649	focal adhesion kinase	fak1
GF4	NM_002007	fibroblast growth factor 4	HBGF-4 HST HST-
			1 HSTF1 K-FGF
			KFGF
IGE	NIM 004460	c-toe induced growth factor	
GF	NM_004469	c-fos induced growth factor (vascular endothelial growth	VEGF-D VEGFD

TABLE E1-continued

Compiled			
Unique List	refseq_nt	Full_name_	Synonyms
FLT1	NM_002019	fins-related tyrosine kinase 1 (vascular endothelial growth factor/vascular permeability factor receptor)	FLT VEGFR1
FOXA1	NM_004496	forkhead box A1	HNF3A MGC33105 TCF3A
GAPDH	NM_002046	glyceraldehyde-3-phosphate dehydrogenase	G3PD GAPD MGC88685
GFAP	NM 002055	glial fibrillary acidic protein	FLJ45472
SLC2A4	NM_001042	solute carrier family 2 (facilitated glucose transporter), member 4	GLUT4
HAND1	NM_004821	heart and neural crest derivatives expressed 1	Hxt Thing1 bHLHa27 eHand
HIF1A	NM_181054	hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)	HIF- 1alpha HIF1 HIF1- ALPHA MOP1 PASD8 bHLHe78
HK2	NM_000189	hexokinase 2	DKFZp686M1669 HKII HXK2
HMGB1	NM_002128	high-mobility group box 1	DKFZp686A04236 HMG1 HMG3 SBP-1
HNF4A	NM_178850	hepatocyte nuclear factor 4, alpha	FLJ39654 HNF4 HNF4a7 HNF4a8 HNF4a9 HNF4alpha MODY MODY1 NR2A1 NR2A21 TCF TCF14
HPRT1	NM_000194	hypoxanthine phosphoribosyltransferase 1	HGPRT HPRT
HSPB1	NM_001540	heat shock 27 kDa protein 1	CMT2F DKFZp586P1322 HMN2B HS.76067 HSP27 HSP28 Hsp25 SRP27
ICAM1 IFNG IGF1	NM_000201 NM_000619 NM_001111285	intercellular adhesion molecule 1 interferon, gamma insulin-like growth factor 1	BB2 CD54 P3.58 IFG IFI IGF-I IGF1A IGFI
IGF2	NM_001127598	(somatomedin C) insulin-like growth factor 2 (somatomedin A)	C11orf43 FLJ22066 FLJ44734 INSIGF pp9974
IGFBP3	NM_001013398	insulin-like growth factor binding protein 3	BP-53 IBP3
IGFBP5	NM_000599	insulin-like growth factor binding protein 5	IBP5
IKBKB	NM_001556	inhibitor of kappa light polypeptide gene enhancer in B- cells, kinase beta	FLJ33771 FLJ36218 FLJ38368 FLJ40509 IKK- beta IKK2 IKKB MGC131801 NFKBIKB
IL10	NM_000572	interleukin 10	CSIF IL- 10 IL10A MGC126450 MGC126451 TGIF
IL1B	NM_000576	interleukin 1, beta	IL-1 IL1- BETA IL1F2
IL3	NM_000588	interleukin 3 (colony-stimulating factor, multiple)	IL- 3 MCGF MGC79398 MGC79399 MULTI-CSF
IL4	NM_172348	interleukin 4	BCGF- 1 BCGF1 BSF1 IL- 4 MGC79402
IL5	NM_000879	interleukin 5 (colony-stimulating factor, eosinophil)	EDF IL-5 TRF
IL6R	NM_181359	interleukin 6 receptor	CD126 IL-6R-1 IL- 6R-alpha IL6RA MGC104991

TABLE E1-continued

Compiled Unique			
List	refseq_nt	Full_name_	Synonyms
IL8	NM_000584	interleukin 8	CXCL8 GCP-
			1 GCP1 LECT LUCT
			LYNAP
			MDNCF MONAP NAF NAP-
			1 NAP1
ITGA5	NM_002205	integrin, alpha 5 (fibronectin	CD49e FNRA VLA5A
V DD	NIM 002252	receptor, alpha polypeptide) kinase insert domain receptor (a	CD200IEL KULVECERI
KDR	NM_002253	type III receptor tyrosine kinase)	CD309 FLK1 VEGFR VEGFR2
LEP	NM_000230	leptin	FLJ94114 OB OBS
LPL	NM_000237	lipoprotein lipase	HDLCQ11 LIPD
MAPK11	NM_002751	mitogen-activated protein kinase 11	P38B P38BETA2 PRKM11 SAPK2
		11	SAPK2B p38-
			2 p38Beta
MMP1	NM_002421	matrix metallopeptidase 1	CLG CLGN
MMD2	NIM 002422	(interstitial collagenase) matrix metallopeptidase 3	CUDS6IMCC1261021
MMP3	NM_002422	(stromelysin 1, progelatinase)	CHDS6 MGC126102 MGC126103
		()	MGC126104
			MMP-3 SL-
MYH1	NM 005062	myoein heern chain 1 abalatal	1 STMY STMY1 STR1 MGC133384 MVHSA1
IVI I II I	NM_005963	myosin, heavy chain 1, skeletal muscle, adult	MGC133384 MYHSA1 MYHa
		,	MyHC-2X/D
			MyHC-2x
MYH11	NM_022844	myosin, heavy chain 11, smooth muscle	AAT4 DKFZp686D10126 DKFZp686D19237
		muscie	FAA4 FLJ35232 MGC126726
			MGC32963
			SMHC SMMHC
MYH7	NM_000257	myosin, heavy chain 7, cardiac	CMD1S CMH1 DKFZp451F047
		muscle, beta	MGC138376 MGC138378 MPD1
			MYHCB SPMD
			SPMM
MYOD1	NM_002478	myogenic differentiation 1	MYF3 MYOD PUM
NFATC1	NM_172390	nuclear factor of activated T-	bHLHc1 MGC138448 NF-
	1111_172330	cells, cytoplasmic, calcineurin-	ATCINFAT2INFATc
		dependent 1	
NFATC2	NM_173091	nuclear factor of activated T-	NFAT1 NFATP
		cells, cytoplasmic, calcineurin- dependent 2	
NFKB1	NM_003998	nuclear factor of kappa light	DKFZp686C01211
		polypeptide gene enhancer in B-	EBP-1 KBF1
		cells 1	MGC54151 NF-kappa-B NF-
			Nr-карра-В Nr- kappaB NFKB-
			p105
			NFKB-
NOS2	NM_000625	nitric oxide synthase 2, inducible	p50 p105 p50 HEP-
11002	MWI_000023	mane oxide symmase 2, mancible	NOS INOS NOS NOS2A
NOTCH1	NM_017617	notch 1	TAN1 hN1
NR3C1	NM_001024094	nuclear receptor subfamily 3,	GCCR GCR GR GRL
		group C, member 1	
NID DO	NM 201270	(glucocorticoid receptor)	MGC126574 NP2
NRP2	NM_201279	neuropilin 2	MGC126574 NP2 NPN2 PRO2714
			VEGF165R2
PAX7	NM_013945	paired box 7	FLJ37460 HUP1 PAX7B
			RMS2
	NM_033016	platelet-derived growth factor	FLJ12858 PDGF2 SIS
PDGFB		beta polypeptide (simian	SSV c-sis
PDGFB			
PDGFB		sarcoma viral (v-sis) oncogene	
PDGFB PDK4	NM 002612	homolog)	FLJ40832
	NM_002612		FLJ40832
	NM_002612 NM_000928	homolog) pyruvate dehydrogenase kinase, isozyme 4 phospholipase A2, group IB	MGC119834 MGC119835
PDK4		homolog) pyruvate dehydrogenase kinase, isozyme 4	

TABLE E1-continued

		st of genes assessed in transcriptional	
Compiled Unique List	refseq_nt	Full_name_	Synonyms
17191	reiseq_nt	Tun_name_	Synonyms
PLIN1	NM_002666	lipid droplet associated protein	perilipin
PPARG	NM_138712	peroxisome proliferator-	CIMT1 GLM1 NR1C3
		activated receptor gamma	PPARG1 PPARG2
0.170	NR 6 005051	1 · · · · 1 · Data · · · ·	PPARgamma
QARS RHOA	NM_005051	glutaminyl-tRNA synthetase	GLNRS PRO2195
KHOA	NM_001664	ras homolog gene family, member A	ARH12 ARHA RHO12 RHOH12
RUNX1	NM_001754	runt-related transcription factor 1	AML1 AML1-EVI-
KUNAI	NWI_001734	funt-related transcription factor 1	1 AMLCR1 CBFA2
			EVI-1 PEBP2aB
RXRA	NM_002957	retinoid X receptor, alpha	FLJ00280 FLJ00318
ICILA	1111_002757	remord x receptor, aipna	FLJ16020 FLJ16733
			MGC102720 NR2B1
SERPINE1	NM_001165413	serpin peptidase inhibitor, clade	PAI/PAI-
	1.1.1_001100+10	E (nexin, plasminogen activator	1 PAI1 PLANH1
		inhibitor type 1), member 1	1122 EE 12 202 EE 1222
SMAD2	NM_005901	SMAD family member 2	JV18 JV18-
5111112 E	11112_000701		1 MADH2 MADR2
			MGC22139
			MGC34440 hMAD-
			2 hSMAD2
SMAD4	NM_005359	SMAD family member 4	DPC4 JIP MADH4
TERT	NM_198255	telomerase reverse transcriptase	EST2 TCS1 TP2 TRT
		•	hEST2
TGFB1	NM_000660	transforming growth factor, beta 1	CED DPD1 LAP TGFB
			TGFbeta
TGFB3	NM_003239	transforming growth factor, beta 3	ARVD FLJ16571 TGF-
			beta3
THBS4	NM_003248	thrombospondin 4	TSP4
TNF	NM_000594	tumor necrosis factor	DIF TNF-
			alpha TNFA TNFSF2
TUBB	NM_178014	tubulin, beta	M40 MGC117247
			MGC16435 OK/SW-
			cl.56 TUBB1
TT IDD1	NIM 020772		TUBB5
TUBB1	NM_030773	tubulin, beta 1	tubulin isoform
TT TDC1	NN 001070	4.1.12	beta (1)
TUBG1	NM_001070	tubulin, gamma 1	GCP-
VOAMI	NIM OROGEO	vascular cell adhesion molecule 1	1 TUBG TUBGCP1
VCAM1	NM_080682	vascular cell adhesion molecule I	CD106 DKFZp779G2333 INCAM-
VEGFA	NM 003376	veccular and othelial growth	100 MGC99561 MGC70609 MVCD1
v EGFA	NM_003376	vascular endothelial growth factor A	VEGF VPF
VIM	NM_003380	vimentin	FLJ36605
WISP1	NM_080838	WNT1 inducible signaling	CCN4 WISP1c WISP1i
** 101 1	14141_000000	pathway protein 1	WISP1tc
WNT1	NM_005430	wingless-type MMTV	INT1
** 14 1 1	14141-002420	integration site family, member 1	11111

Bioinformatics Analysis:

Data retrieved in .csv format from the Biomark machine by Fluidigm is converted to a tabular format including sample, mRNA, and replicate information along with the raw fluorescence value. PCR reactions that failed are marked as missing. Multiple experiments were combined after normalizing to total expression of mRNA species. All measured mRNA 55 expression is filtered based on the requirement of detection in at least 2 of all of the biological replicates tested. We assessed technical, biological and set deviation mean in entire dataset.

For data analysis Ct values for all genes of interest are first normalized to the averaged Ct values for housekeeping genes 60 from the corresponding sample to obtain Δ Ct values (Δ Ct=Ct gene-Ct average housekeeping genes). Genes from each sample are then normalized to the same gene in untreated control to obtain Δ \DeltaCt values (Δ \DeltaCt= Δ Ct control sample- Δ Ct treated sample).

To obtain fold change values up-regulated genes (i.e. $\Delta\Delta$ Cts greater than 0) are subject to the following calculation:

Fold Change= $2^\Delta\Delta$ Ct. For down-regulated genes (i.e. $\Delta\Delta$ Cts less than 0): Fold Change= $-(2^\Delta\Delta$ Ct).

Cellular Proliferation Assays (Assays A1-A11 in the Data Tables Below)

Background and Therapeutic Relevance:

The ability to modulate the rate of cellular proliferation and apoptosis of different cell types represents a fundamental property of many therapeutic compounds, and is of direct relevance to the treatment and prevention of a broad range of diseases and disorders.

Accordingly AARS polypeptides with the ability to modulate the rate of cellular proliferation and or apoptosis have significant therapeutic utility in a broad range of diseases including, as growth factors, and differentiation factors for stem cells, and in treatment regimens to enhance or suppress the proliferation of specific cell types of interest in vivo or in vitro, including for example, haemopoietic cells, immunomodulatory cells, cancer, and for the treatment and prevention

of diseases associated with aging, including for example neurodegeneration, peripheral neuropathy, and loss of muscular and soft tissue tone.

Methods:

Effects of the AARS polypeptides on cellular proliferation 5 is assessed using one or more of the methods listed below, and as more specifically elaborated in the methods below.

Hoechst 33432.

Standard cell counts to assess proliferation are performed using Hoechst 33432, which is a cell-permeant nuclear counterstain that emits blue fluorescence when bound to dsDNA. It is available as a solution (Invitrogen Cat # H-3570) that is used at a final concentration of 1 ug/mL in either media or PBS. Cells are grown in 96 well plates in the presence of AARS polypeptides for a standard growth time of 48 hours, or 15 longer depending on cell type and as described in the examples below.

ATP-Lite.

Cellular ATP levels correlate with cellular health and can be readily determined using a variety of commercially available kits. ATP-lite (Perkin-Elmer, Cat #6016947 Boston, Mass. 02481) which is a homogenous mixture of lysis solution and ATP-detection reagent. is pre-mixed before use and is used 1:1 v:v ratio with cultured cells. Plates are incubated for 5 minutes to promote lysis and plates are measured using 25 a luminescent plate reader. Cells are grown in 96 well plates in the presence of AARS polypeptides for a standard growth time of 48 hours, or longer depending on cell type and as described in the examples below.

ALAMARBLUE®

(Resazurin) is a cell viability indicator which is based on the redox state of the cells. Resazurin, the active ingredient, is a nontoxic, cell permeable compound that is blue in color and virtually nonfluorescent when present in its oxidized form. However upon entering normal viable cells, resazurin is rapidly reduced to resorufin, which produces a red fluorescence signal. Viable cells continuously convert resazurin to resorufin, thereby generating a quantitative measure of viability—and cytotoxicity. The lack of toxicity allows long-term exposure of cells to resazurin without negative impact; cells grown in the presence of resazurin were found to produce similar numbers of viable cells as control cells, as determined by flow cytometric analysis.

Measurements are made by adding a solution of Resazurin/ ALAMARBLUE® to cells, incubating them for 1-4 hours, 45 and reading the fluorescence or absorbance. The amount of fluorescence or absorbance is proportional to the number of living cells and corresponds to the cells metabolic activity. Damaged and nonviable cells have lower innate metabolic activity and thus generate a proportionally lower signal than 50 healthy cells. After incubation with ALAMARBLUE®, samples can readily be measured on fluorescence and absorbance instrumentation. For fluorescence readings: 530 nm excitation and 590 nm emission filter settings are used.

Cells are grown in 96 well plates in the presence of AARS 55 polypeptides for a standard growth time of 48 hours, or longer depending on cell type and as described in the examples below

Acetylated LDL Uptake in HepG2C3a Human Hepatocyte Cells. (Assay B1 in the Data Tables Below)

Background and Therapeutic Relevance:

LDL is the major carrier of cholesterol in the blood, accounting for more than 60% of the cholesterol in plasma. In humans, the hepatic LDL receptor is responsible for clearing around 70% of plasma LDL from circulation. Internalized 65 LDL is degraded to free cholesterol and amino acids in the lysosome. The liver is the most important organ for LDL

158

catabolism and LDL receptor activity in humans. LDL that is not internalized and remains in circulation can be transported by endothelial cells into the vessel wall, resulting in the formation of atherosclerotic plaques. Circulating LDL can also be taken up by macrophages and this can also contribute to the formation of plaques. Increasing LDL uptake into hepatic tissue is thought to be beneficial to human health and finding safe and efficacious therapeutics that may the positively regulate this process may provide new therapies for cardiovascular and metabolic diseases. To investigate whether the unique properties of AARS polypeptides can regulate uptake of acetylated LDL, a standard assay for measuring acetylated LDL uptake is employed in HepG2C3a cells.

Accordingly AARS polypeptides with the ability to modulate LDL uptake have significant therapeutic utility in a broad range of diseases including for example, the treatment of hypercholesteremia, hyperlipidemia, type 1 and 2 diabetes, metabolic syndrome, and vascular diseases including atherosclerosis

Methods:

HEPG2C3a cells (ATCC# CRL-10741) are maintained in Eagles Minimal Essential (EMEM) medium supplemented with 10% FBS (HyClone Cat#SH30910.03), 50 u/mL penicillin/50 µg/mL streptomycin, (Invitrogen) in 15 mL medium in 75 mL flasks. Cells are grown at 37° C., 5% CO2, in a humidified environment and utilized in BSL2 certified tissue culture hoods using sterile technique and appropriate personal protective equipment including goggles, gloves and lab coats. HEPG2C3a express the LDL-receptor and are competent for acetylated LDL uptake when grown on clear bottom collagen coated plates. A 100 µL volume of cells is plated on collagen coated plates (Invitrogen Cat#A11428) overnight in complete medium (above) at a cell density of 50,000 cells/ mL. Cells are washed once with PBS (Invitrogen Cat#10010) and 80 µL of serum free EMEM is added to each well. AARS polypeptides at a final concentration of 250 nM per well are added in a consistent volume in sterile PBS to each well. A unique AARS polypeptide is placed in each well. Cells are serum starved and exposed to the AARS polypeptides for 16 hours. Following the 16 hour incubation, the, supernatant is collected and soluble ICAM is measured using a standard ELISA kit from RND Systems (Cat # DY643), and serum free media supplemented with 5 µg/mL ac-LDL (Alexa Fluor 488 labeled Cat # L23380, Invitrogen) is added to each well. Following a 2 hour incubation at 37° C. 5% CO₂, cells are washed twice with sterile PBS before 100 µL PBS is added to each well for quantification. Plates were analyzed for total fluorescent intensity using a bottom read on a Victor X5 fluorescent plate reader (Perkin Elmer) at an excitation wavelength centered around 485 nm, and an emission wavelength centered around 535 nm. Cells are stained with Hoechst dye and fluorescent intensity 405 nm Excitation/450 nM Emission is read to confirm total cell number is consistent across the plate.

Regulation of Human Neutrophil Oxidative Burst and Elastase Production (Assays C1-C3 in the Data Tables Below)

Neutrophil Oxidative Burst

Background and Therapeutic Relevance:

Phagocytosis by polymorphonuclear neutrophils and monocytes constitutes an essential arm of host defense against infections by microorganisms including bacteria and fungi. The phagocytic process can be separated into several major stages: chemotaxis (migration of phagocytes to inflammatory sites), attachment of particles to the cell surface of phagocytes, ingestion (phagocytosis) and intracellular killing by oxygen-dependent (oxidative burst) and oxygen-indepen-

dent mechanisms. Reduced or missing burst activity is observed in inborne defects like the chronic granulomatous disease (CGD). CGD is a heterogeneous group of inherited disorders that usually manifests itself during the first two years of life. The disease is characterized by repeated and 5 life-threatening infections caused by bacterial and fungal organisms. These infections typically consist of pneumonia, lymphadenitis, or abscesses that involve lymph nodes, lungs, and liver. The NADPH oxidase is the enzyme system responsible for producing superoxide anion, which is quickly con- 10 verted to hydrogen peroxide and hydroxyl radicals. Abnormalities in the constituent peptides of the NADPH oxidase enzyme system lead to the dysfunctions characteristic of CGD. Neutrophils from CGD patients fail to produce a significant oxidative burst following stimulation. Different 15 forms of CGD are described (classical X-linked CGD and autosomal recessive patterns). The oxidative burst of granulocytes is impaired in transplantation, later stages of HIV infection, and in the elderly, making these populations more susceptible to secondary infection and exacerbations of 20 inflammatory disease. Various immunomodulators (e.g., cytokines (GM-CSF, G-CSF, TNF) or drugs) also seem to have effects on the oxidative burst. There is the potential for proteins with the ability to up-regulate or down-regulate oxidative burst in a therapeutic fashion to be useful for a variety 25 of different disease states.

Methods:

The protein kinase C ligand phorbol 12-myristate 13-acetate (PMA) can be utilized in this assay as an agonist of the oxidative burst process. Heparinized whole blood is mixed 30 with sterile dextran (0.6% final concentration) for 1 hour and allowed to separate into layers. The lower layer contains neutrophil, monocytes and red blood cells. An ammonium chloride lysis step is utilized to remove all RBCs and a 97% pure population of neutrophils with approximately 3% mono- 35 cyte contamination remains following lysis step. Upon stimulation, granulocytes and monocytes produce reactive oxygen metabolites (superoxide anion, hydrogen peroxide, hypochlorous acid) which destroy bacteria inside the phagosome. Formation of the reactive oxidants during the oxidative 40 burst can be monitored by the addition and oxidation of Amplex Red. The percentage of cells having produced reactive oxygen radicals are then analyzed as well as their mean fluorescence intensity using a fluorescent plate reader. The typical time course for this reaction is 10 minutes, with obvi- 45 ous burst being seen by 2 minutes and a drop off of signal being seen by 20 minutes. This assay can be run in agonist mode in the absence of PMA or in antagonist mode, with concomitant administration of AARS polypeptides and PMA at a concentration that is below the EC50 for this compound. 50 Regulation of Human Neutrophil Elastase Production

Background and Therapeutic Relevance:

Neutrophil elastase is a serine protease that has been implicated as having a specific role in the development of a wide range of human diseases, including inflammatory disorders of the lung and cardiovascular system. Although its key physiologic role is in innate host defense, it can also participate in tissue remodeling and possesses secretagogue actions that are now recognized as important to local inflammatory signals. Neutrophil elastase activity has been implicated in 60 the development of emphysema for several decades, however only relatively recently has a pathogenetic function been ascribed to this serine proteinase in situations where excessive extracellular matrix deposition occurs. The use of genetically manipulated animal models is starting to uncover the 65 potential ways in which its actions might influence fibrotic lung repair. Emerging evidence suggests that the engagement

160

of cellular pathways with more direct effects on fibrogenic mediator generation and collagen synthesis appears to underpin the actions of neutrophil elastase in promoting lung matrix accumulation. Human neutrophil elastase is also present within atherosclerotic plaques where it contributes to matrix degradation and weakening of the vessel wall associated with the complications of aneurysm formation and plaque rupture. It is joined by other extracellular proteases in these actions but the broad range of substrates and potency of this enzyme coupled with activity associated with neutrophil degranulation single this disruptive protease out as therapeutic target in atherosclerotic disease.

Methods:

This assay uses the ENZCHEK® Elastase Assay Kit (Invitrogen Catalog # E-12056). Neutrophils are prepared from fresh human blood using a 6% dextran solution and red blood cells are lysed before plating cells in RPMI media (media should be un-supplemented with no serum, no antibiotics). A 1.0 mg/mL stock solution of the DQ elastin substrate is prepared by adding 1.0 mL of deionized water (dH2O) directly to one of the three vials containing the lyophilized substrate and mixing to dissolve. 1× Reaction Buffer is prepared by diluting 6 mL of the 10x Reaction Buffer in 54 mL dH2O. A 100 mg/mL working solution of the DQ elastin substrate is prepared by diluting the DQ elastin stock solution tenfold in 1× Reaction Buffer. Porcine pancreatic elastase stock solution is prepared by making a 100 U/mL stock solution in dH2O. To assay for elastase activity, 50 µL of 1× Reaction Buffer is pipette into each assay well containing 500,000 neutrophils/ mL in a 30 μ L volume. 8 μ L of each AARS polypeptide is added per well, and the sample incubated for 20 minutes at 37° C. $50~\mu\text{L}$ of $100~\mu\text{g/mL}$ DQ elastin working solution is added to each well and mixed. Samples are incubated at room temperature, protected from light, for 30 minutes. Fluorescence intensity in a fluorescence microplate reader equipped with standard fluorescein filters (ex 485/Em 535) fluorescence may be measured over multiple time points.

Binding to Toll-Like Receptors and Activation of Nfkb (Assays D1-D4 in the Data Tables Below)

Background and Therapeutic Relevance:

Macrophages are major players in the innate immune system and express a large repertoire of different classes of pattern recognition receptors (PRRs), including the family of Toll-like receptors (TLRs) which are powerful regulators and controllers of the immune response.

Stimulation of TLRs by microbial pathogens and endogenous ligands initiates signaling cascades that induce the secretion of pro-inflammatory cytokines and effector cytokines that direct downstream adaptive immune responses. Endogenous ligands, as well as microbial components, are recognized by and can activate TLRs, raising the possibility that these receptors may be critical targets for the development of new therapies for multiple diseases.

Accordingly AARS polypeptides that modulate TLR receptor activity, have therapeutic utility in a broad range of diseases and disorders including for example, inflammatory diseases and disorders, autoimmune diseases, tissue transplantation/organ rejection, cancer prevention or treatment, the modulation of haematopoiesis and infection.

Measurement of TLR Activation in RAW-BLUE Cells

Mouse macrophages sold under the trademark RAW-BLUETM cells (Invivogen, Catalog code: raw-sp) express all TLRs except TLR5 and include a secreted embryonic alkaline phosphatase (SEAP) gene which is inducible by NF-kB and AP-1 transcription factors. Upon TLR stimulation, RAW-

BLUETM cells activate NF-kB and/or AP-1 leading to the secretion of SEAP which is measurable when using SEAP detection medium.

Methods:

RAW-BLUETM cells are washed twice with PBS, 5 trypsinized and resuspended in fresh Growth Medium (Growth Medium: DMEM, 4.5 g/1 glucose, 10% heat-inactivated fetal bovine serum (30 minutes at 56° C.), 100 mg/mL ZEOCINTM, 2 mM L-glutamine). Cells are plated at a concentration of 50,000 cells/well in a 96 well plate in a total volume of 100 μL, and AARS polypeptides, controls, or AARS polypeptides (+LPS) are added to each well at the concentrations shown in the experiments outlined below. Cells are incubated at 37° C. in a 5% CO₂ incubator for 18 hours. On experimental day 2, SEAP detection medium 15 (QUANTI-BLUETM) (Invivogen Catalog code: rep-qb1) is prepared following the instructions and 120 μL is added per well to a clear flat-bottom 96-well plate, and cell supernatant is added (20 µL). Samples are incubated at 37° C. for about 30 minutes to up to 2 hours. SEAP levels are determined using a 20 spectrophotometer and reading absorbance at 650 nM.

To detect AARS polypeptides that specifically block TLR activation this assay can be modified to identify potential TLR antagonists. In this case AARS polypeptides are added to the cells at a final concentration of about 250 nM per well, (or as 25 otherwise specified in the Examples below) 1 hour prior to adding 50 ng/mL LPS. Cells are incubated and SEAP detected as described above. PBS control wells with no LPS or AARS polypeptide alone added are used to find the basal level of TLR stimulation at the time of the measurement. 30 Control wells are pretreated with PBS and known TLR agonists and antagonists. The ratio of the background subtracted [PBS plus LPS signal] to [AARS polypeptide plus LPS signal] is used to determine percent antagonism. Human TLR Screening in Hek293 Cells

Human HEK293 cells are genetically modified and sold under the trademark HEK-BlueTM TLR cells (Invivogen). The TLR2 and TLR4 versions of this cell type selectively express all TLR2 or TLR4 and include a secreted embryonic alkaline IFN-beta minimal promoter which is fused to five NF-kB and AP-1 transcription factors binding sites. With the use of specific TLR 2 or 4 agonists (respectively), HEK-BLUETM TLR2 and HEK-BLUE™ TLR4 cells activate NF-kB and/or AP-1 leading to the secretion of SEAP which is measurable when 45 using SEAP detection reagent. The HEK-BLUE $^{\text{TM}}$ TLR2 cells are co-transfected with the LPS co-receptor protein CD14 to enhance TLR2 responsiveness and improve signal quality. The parent cell expresses endogenous levels of TLR1, 3, 5, 6 and also NOD1.

Methods:

HEK-BLUETM-TLR2 or HEK-BLUETM-TLR4 cells are washed twice with PBS, trypsinized and resuspended in fresh Growth Medium: DMEM, 4.5 g/L glucose, 10% heat-inactivated fetal bovine serum (30 minutes at 56° 55 C.), 100 mg/mL ZEOCINTM, 2 mM L-glutamine). Cells are plated at a concentration of 50,000 cells/well in a 96 well plate in a total volume of 100 μL, and AARS polypeptides, controls, or AARS polypeptides (+LPS) are added to each well at the concentrations shown in the experiments outlined below. 60 Cells are incubated at 37° C. in a 5% CO₂ incubator for 18 hours. On experimental day 2, SEAP detection medium (QUANTI-BLUETM) (Invivogen Catalog code: rep-qb1) is prepared following the instructions and 120 μL is added per well to a clear flat-bottom 96-well plate, and cell supernatant 65 is added (20 µL). Samples are incubated at 37° C. for about 30 minutes to up to 2 hours. SEAP levels are determined using a

162

spectrophotometer and reading absorbance at 650 nM. Control wells are pretreated with PBS and known TLR agonists such as UltraPure LPS (TLR-4) or PAM3CSK4 (TLR-2). The ratio of the background subtracted [PBS plus LPS signal] to [AARS polypeptide plus LPS signal] is used to determine percent agonism.

Cytokine Release (Assays E1-E16 in the Data Tables Below) Background and Therapeutic Relevance:

Cytokines are a diverse set of small cell signaling protein molecules that are used extensively for intercellular communication, and play significant roles in normal body homeostasis, including immunomodulation and regulation. Accordingly AARS polypeptides that modulate the release, or biological activities of cytokines, have therapeutic utility in a broad range of diseases and disorders including for example, inflammatory diseases and disorders, autoimmune diseases, tissue transplantation/organ rejection, cancer prevention or treatment, the modulation of haematopoiesis and infection. Cytokine Release from Cells in Culture

Methods:

Test cells are seeded into a 24-well plate at density of about 1 million cells/well in 1 mL of growth media. Cells are treated with either AARS polypeptide (at the concentrations shown in the examples below) or an equal volume of PBS and incubated overnight at 37° with 5% CO₂. Following cell treatment, samples are centrifuged at 4° C. in a swinging bucket centrifuge at 2,000×g for 5 minutes. Media is carefully removed so as to not disturb the cell pellet and transferred to a new tube. Samples are assayed immediately or snap frozen in liquid nitrogen for subsequent analysis. Cytokine release (including the cytokines IL-8, IL-10, Serpin E1, CM-CSF, GRO, IL-1 alpha, IL-1beta, IL-1ra, IL-6, MCP-1, MIP-1, RANTES and TNF-alpha) is determined using commercially available kits (R&D Systems, Inc, MN, USA) or via a con-35 tract research organization (MD Biosciences (St. Paul, Minn.).

Cytokine Release from Human Whole Blood

Methods:

Human whole blood is obtained from normal human phosphatase (SEAP) reporter gene under the control of an 40 donors and collected with heparin in standard collection tubes. Blood is used on the same day as it is collected to ensure adequate cell health. Blood is mixed gently and plated in an 100 µL volume into 96 well polycarbonate V bottom plates. AARS polypeptides are added and slowly mixed into blood 2× using a multichannel pipet set on 50 μL. Filter tips are used for all experimentation and full PPE is worn. All experimentation occurs in a dedicated biosafety hood that is suitable for experimentation with human blood. Blood is incubated overnight at 37° C. with 5% CO₂. Following cell treatment, samples are centrifuged in a swinging bucket centrifuge at 2,000×g for 5 minutes. Supernatant is collected for cytokine ELISAs ELISA are performed as described previ-

Cytokine Release from PBMCs

Methods:

To isolate peripheral blood mononuclear cells freshly isolated human whole blood is gently layered over Sigma HIS-TOPAQUE®-1077 at a ratio of 1:1 in 50 mL conical tubes at room temperature. Layered samples are centrifuged at 400×g in a swinging bucket clinical centrifuge for 30 minutes at room temperature with no brake. The white cellular layer at the interface between the plasma and density gradient is then removed by pipet. These peripheral blood mononuclear cells are washed twice with RPMI-1640 (Invitrogen #22400-105) by dilution and centrifugation for 10 minutes at 250×g. The washed PBMC were resuspended in RPMI-1640+10% FBS and plated at 1×10^6 cells/mL.

Cytokine Release from Human Synoviocytes Background and Therapeutic Relevance:

A large number of studies have demonstrated that IL-6 and IL-8 are overproduced in several diseases, and thus may play a fundamental role in the pathogenesis of inflammatory disease. IL-6 activates endothelial cell production, leading to the release of IL-8 and monocyte chemoattractant protein, expression of adhesion molecules, and recruitment of leukocytes to inflammatory sites. These cytokines are expressed in cell types associated with inflammatory disease, including 10 cells involved in the pathogenesis of systemic juvenile arthritis, systemic lupus erythematosus, Crohn's disease, and rheumatoid arthritis. One of the most important systemic actions of cytokine production is the induction of the acute phase response. Acute phase proteins are produced primarily by the liver and include proteins that promote the immune response through activation of complement, induction of proinflammatory cytokines, and stimulation of neutrophil chemotaxis. Alternatively, the acute phase response can be helpful, and acute-phase proteins, such as proteinase antagonists, 20 opsonins, and procoagulants, help limit tissue destruction by resolving inflammation. In particular, IL-6 can stimulate synoviocyte proliferation and osteoclast activation, leading to synovial pannus formation and repair. IL-6 acts with IL-1 to increase production of matrix metalloproteinases, which may 25 contribute to joint and cartilage destruction. However, IL-6 may also have protective effects in the joint, as suggested by the finding that this cytokine induces the expression of the tissue inhibitor of metalloproteinase and stimulates proteoglycan synthesis when injected into the joints of mice with 30 antigen-induced arthritis. Human Fibroblast-Like Synoviocytes-Rheumatoid Arthritis (HFLS-RA) are isolated from synovial tissues obtained from patients with Rheumatoid Arthritis (RA). They are cryopreserved at second passage and can be cultured and propagated at least 5 population dou- 35 blings. HFLS are long known for their role in joint destruction by producing cytokines and metalloproteinases that contribute to cartilage degradation.

Accordingly AARS polypeptides with the ability to modulate the growth, differentiation, or cytokine release profile of 40 fibroblast-like synoviocytes-rheumatoid arthritis (HFLS-RA) have therapeutic utility in a broad range of diseases including for example, the treatment of inflammatory diseases and disorders including systemic juvenile arthritis, systemic lupus erythematosus, Crohn's disease, and rheumatoid 45 arthritis.

Methods:

HFLS-RA, adult cells (Cell Applications Cat #408RA-05a) are maintained in Synoviocyte Growth Medium (Cell Applications Cat #415-50) in 15 mL medium in 125 mL 50 flasks for 1 passage before use. Cells are maintained at 37° C., 5% CO₂, in a humidified environment and utilized in BSL2 certified tissue culture hoods using sterile technique and appropriate personal protective equipment including goggles, gloves and lab coats. An 80 µL volume of cells is 55 plated overnight in growth medium at a cell density of about 50,000 cells/mL. AARS polypeptides at a final concentration of 250 nM per well (or as otherwise indicated in the examples below) are added in sterile PBS to each well following overnight adherence. Control wells contain untreated cells and are 60 incubated with an equivalent volume of PBS. Cells are exposed to proteins or PBS in basal media (Cell Applications Cat #310-470) for 24 hours. Supernatant is removed and IL-8, IL-6 and TNFa ELISA assays are run according to manufacturer's instructions (RND Systems, Cat # DY206 and 65 DY-208, DY-210 Duo-set kits). Proliferation is assessed with Resazurin as described previously by adding fresh media

164

containing Resazurin to plates following supernatant removal and incubating for three hours at 37° C. Plates are read on a fluorescent plate reader and viability/proliferation is expressed as a function of resorufin associated fluorescence of AARS polypeptide treated wells divided by resorufin associated fluorescence of PBS only treated wells.

Human Astrocyte Proliferation and Inflammatory Cytokine Production

Background and Therapeutic Relevance:

Human astrocytes (HA) are derived from human cerebral cortex. They are cryopreserved at second passage and can be cultured and propagated 10 population doublings. HA are the most abundant cells in the central nervous system and they perform many functions such as provision of mechanical support and nutrients to neurons, and removal of wastes from neurons. In addition to playing a critical support role for optimal neuronal functioning, they also provide biochemical support of endothelial cells which form the blood-brain barrier. Recent studies have shown that astrocytes are capable of regulating neurogenesis by instructing the stem cells to adopt a neuronal fate and controlling the function of single synapses, participate actively in the transfer and storage of information in the brain. Recognition of the importance of astrocytes in nervous system functioning is increasing, HA can serve as useful in vitro model for exploring the diversity of astrocytes functions. Astrocytes have been shown to proliferate in response to IL6 and TNFalpha. In addition, these cells are capable of making their own IL6 and TNFalpha. Thus AARS polypeptides which modulate the proliferation and cytokine production in HA have therapeutic utility in a variety of neurological diseases including neuro-inflammation, neurodegeneration, tumorigenesis of the brain, and brain ischemia and repair.

Methods:

Human Astrocytes (HA) from Cell Applications (Cat #882K-05f) are maintained in Cell Applications HA Cell Growth Medium (Cat #821-500) according to manufacturer's instructions. Cells are maintained at 37° C., 5% CO₂, in a humidified environment and utilized in BSL2 certified tissue culture hoods using sterile technique and appropriate personal protective equipment including goggles, gloves and lab coats. An 80 µL volume of cells is plated on collagen coated plates overnight in complete medium (above) at a cell density of 50,000 cells/mL. Cells are washed once with PBS and 80 μL of serum free growth media is added to each well. AARS polypeptides at a final concentration of 250 nM per well (or as otherwise described in the examples below) are added in a consistent volume in sterile PBS to each well. Cells are exposed to AARS polypeptides for 48 hours and spent media is removed for cytokine assessment (as described previously). Cells are exposed to proteins or PBS in basal media (Cell Applications Cat #310-470) for 48 hours. Supernatant is removed and IL-8 and IL-6 ELISA assays are run according to manufacturer's instructions (RND Systems, Cat # DY206 and DY-208, DY-210 Duo-set kits). Proliferation is assessed with Resazurin as described previously by adding fresh media containing Resazurin to plates following supernatant removal and incubating for three hours at 37° C. Plates are read on a fluorescent plate reader and viability/proliferation is expressed as a function of resorufin associated fluorescence of AARS polypeptide treated wells divided by resorufin associated fluorescence of PBS only treated wells.

Human Lung Microvascular Endothelial Cell (HLMVEC) Proliferation and Inflammatory Cytokine Production.

Background and Therapeutic Relevance:

The pulmonary vasculature is of great physiological/pathological significance. It is now recognized to be a tissue

composed of metabolically active, functionally responsive cells, that interact with circulating substrates and formed elements in ways that regulate the composition of systemic arterial blood, affect target organ functions, and contribute to thrombosis, hemostasis and immune reactions, as well as 5 tumor metastasis. Human lung microvascular endothelial cells (HLMVEC) exhibit elevated expression of chemoattractant cytokines and cell adhesion molecules that provide critical cues for directed migration of leucocytes into the lung during acute lung injury. This primary cell type can be useful tool for studying various aspects of pathology and biology of the pulmonary microvasculature in vitro. Alteration in the structure and function of the microvasculature in response to inflammatory stimuli is believed to be a key factor in organ damage and under appropriate conditions, may provide a 15 stimulus for repair. A significant cause of these vascular alterations is the induction of an inflammatory reaction involving leukocyte infiltration. A variety of studies focused on granulocyte adhesion to the endothelium have revealed that leukocyte recruitment and emigration involves a well-orchestrated 20 adhesion cascade. The adhesion cascade begins when the granulocyte attaches to the endothelium and begins to roll in the direction of fluid flow at a low velocity. As the granulocyte rolls, it becomes activated, subsequently firmly adheres to the endothelium, and migrates across the endothelium into the 25 extravascular space. These adhesion events are mediated, in part, by molecular interactions that occur between CAMs on the surface of the granulocytes and cognate glycoproteins present on the endothelium. A variety of studies have revealed that the endothelial cell adhesion molecule E-selectin can 30 interact with SLex-type glycan presenting granulocyte ligands to mediate the attachment and rolling steps of the adhesion cascade. The downstream steps of the cascade involve the interaction of endothelial-expressed intercellular adhesion molecule with granulocyte-expressed CD18 inte- 35

Thus AARS polypeptides which modulate proliferation and/or cytokine production of human lung microvascular endothelial cells have therapeutic utility in a variety of vascular and pulmonary diseases including inflammatory and 40 obstructive lung diseases including for example, pulmonary hypertension, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and asthma.

Methods:

HLMVEC (Cell Applications, Catalog #540-05) are main- 45 tained in Cell Applications Microvascular Endothelial Cell Growth Medium (Cat #111-500), For appropriate growth, an Attachment Factor Solution containing collagen (Cell Applications, Catalog #123-100), is used to coat plates and flasks before plating cells. Cells are maintained at 37° C., 5% CO₂, 50 in a humidified environment and utilized in BSL2 certified tissue culture hoods using sterile technique and appropriate personal protective equipment including goggles, gloves and lab coats. A 80 µL volume of cells is plated on collagen coated plates overnight in complete medium (above) at a cell density 55 of 50,000 cells/mL. Cells are washed once with PBS and 80 μL of serum free growth media is added to each well. AARS polypeptides at a final concentration of 250 nM per well (or as otherwise described in the examples below) are added in a consistent volume in sterile PBS to each well. Cells are 60 exposed to AARS polypeptides for 48 hours and spent media is removed for ELISA for cell adhesion molecules and cytokine assessment (as described previously). Cell adhesion molecules including soluble VCAM and/or ICAM are measured using a standard ELISA kit from RND Systems (Cat # DY643 and DY720 respectively). Proliferation is assessed with Resazurin as described previously by adding fresh media contain166

ing Resazurin to plates following supernatant removal and incubating for three hours at 37° C. Plates are read on a fluorescent plate reader and viability/proliferation is expressed as a function of resorufin associated fluorescence of AARS polypeptide treated wells divided by resorufin associated fluorescence of PBS only treated wells.

Cell Adhesion ((Assays F1-F7 in the Data Tables Below)

Background and Therapeutic Relevance:

Cell Adhesion Molecules (CAMs) are proteins located on the cell surface which are involved with the binding with other cells or with the extracellular matrix (ECM) in the process called cell adhesion. These proteins are typically transmembrane receptors and are composed of three domains: an intracellular domain that interacts with the cytoskeleton, a transmembrane domain, and an extracellular domain that interacts either with other CAMs of the same kind (homophilic binding) or with other CAMs or the extracellular matrix (heterophilic binding). Most of the CAMs belong to four protein families: Ig (immunoglobulin) superfamily (IgSF CAMs), the integrins, the cadherins, and the selectins. The immunoglobulin superfamily (IgSF) cell adhesion molecules are calcium-independent transmembrane glycoproteins, including: neural cell adhesion molecules (NCAMs), intercellular cell adhesion molecules (ICAMs), vascular cell adhesion molecule (VCAM), platelet-endothelial cell adhesion molecule (PECAM-1), endothelial cellselective adhesion molecule (ESAM), junctional adhesion molecule (JAMs), nectins, and other cell adhesion molecules.

Cell adhesion molecules are cell surface glycoproteins that are critical for leukocyte adhesion to the sinusoidal endothelium and transmigration and cytotoxicity in a variety of inflammatory liver diseases. ICAM-1 plays an important role in inflammation, and the increased expression of ICAM-1 on endothelial cells is reflected in the activation of endothelial cells. ICAM-1 is of particular importance since it mediates firm endothelial adhesion and facilitates leukocyte transmigration. Studies have shown that there is an upregulation of ICAM-1 on both sinusoidal cells and hepatocytes in inflammatory liver conditions such as hepatitis B viral infection, autoimmune liver disorders, alcoholic hepatitis, and liver allograft rejection.

Thus AARS polypeptides which modulate cell adhesion molecule production and cell adhesion to endothelial cells have therapeutic utility in a variety of inflammatory diseases including for example, cardiovascular diseases, atherosclerosis, autoimmunity and pulmonary hypertension.

Methods:

Human umbilical vein cells (ATCC, Cat # CRL-2873) (HUVEC) are seeded at a concentration of about 1.2×10⁵ cells/well in 12 well plates coated with human fibronectin attachment solution in the suggested ATCC media and supplements and grown according to manufacturer's instructions. Cells are stimulated with AARS polypeptides at the indicated concentrations, or PBS alone, and incubated overnight in growth media. Human acute monocytic leukemia (THP-1 (TIB-202)), cells are resuspended into 0.1% BSA/RPMI serum free medium with calcein AM (6 μL/mL; Invitrogen Cat # C1430) and incubated for 30 minutes. Labeled cells are collected and resuspended in RPMI medium containing 10% FBS, and the density adjusted to 2×10⁶ cells/mL.

 $100~\mu L~(2\times10^5)$ labeled THP-1 cells are placed into each well of the HUVEC monolayer in 1 mL of growth media and incubated for 15 minutes. The wells are washed twice with PBS to remove unbound cells, and then the cells are read by fluorescent plate reader with an Excitation wavelength of 488 nm and an Emission wavelength of 530 nm.

Cellular Differentiation (Assays G1-G4 in the Data Tables Below)

Adipocyte Differentiation and Proliferation in Primary Human Pre-Adipocyte Cells.

Background and Therapeutic Relevance:

Both obesity and lipodystrophy are commonly associated with pathologies including diabetes and cardiovascular diseases. It is now recognized that adipose tissue is an endocrine organ that secretes a wide variety of factors, and dysregulated secretion affects adipogenesis as well as whole-body glucose/ insulin homeostasis. Excess adipose tissue leading to obesity has become a severe public health threat. Adipose tissue development can be affected by genetic background, hormonal balance, diet, and physical activity. Adipose tissue mass can increase when fat cells are increased in size due to 15 higher triacylglycerol accumulation. In addition, an increase in fat cell number, arising from differentiation of precursor cells into adipocytes, can also occur even in adults as observed in severe human obesity and in rodents fed a highcarbohydrate or high-fat diet. Adipocytes specifically are 20 thought to arise from mesenchymal cells that undergo the commitment and differentiation process, adipogenesis. Preadipocyte cell lines can undergo adipocyte differentiation upon treatment with adipogenic agents comprised of synthetic glucocorticoid, dexamethasone (DEX), isobutylmeth- 25 ylxanthine (IBMX), and insulin, have been valuable in these studies. Peroxisome proliferator-activated receptor y (PPARy) and CCAAT enhancer-binding protein (C/EBP) family of transcription factors have been firmly established to play critical roles in adipocyte differentiation. Early during 30 adipocyte differentiation, C/EBPβ and C/EBPδ are induced by DEX and IBMX, respectively, which together then induce PPARγ and C/EBPα to activate various adipocyte markers that are required for adipocyte function. Other transcription factors have also been reported to either positive or negatively 35 regulate adipogenesis and various growth factors and hormones can affect adipocyte differentiation by regulating expression of adipogenic transcription factors. In fact, in addition to being the main site for energy storage in mammals by storing triacyglycerol and releasing fatty acids in times of 40 need, adipose tissue secretes a wide array of molecules that are involved in diverse physiological processes including immune response, vascular function, and energy homeostasis. Cytokines such as TNF-α and IL-6 are secreted from adipocytes. Some of these factors may also affect growth and 45 development of adipose tissue by autocrine/paracrine action.

Thus AARS polypeptides which have the ability to modulate the differentiation and/or proliferation of normal human pre-adipocytes have therapeutic utility in a broad range of diseases including for example, the treatment and prevention of metabolic disease, cardiovascular diseases, obesity and lipodystrophies, as well as the long term complications of diabetes.

Methods:

HPAd (human pre-adipocytes) (Cell Application Cat 55 #803sD) are maintained according to vendor instructions. For culturing, cells are thawed quickly, and transferred immediately into 15 mL of Adipocyte Growth Medium (Cell Application Cat #811M-250) and plated into a standard sterile tissue culture treated flask. Media is replaced with fresh Adipocyte Growth Medium every other day until cell is >60% confluent. Cells are grown at 37° C., 5% CO₂, in a humidified environment and utilized in BSL2 certified tissue culture hoods using sterile technique and appropriate personal protective equipment including goggles, gloves and lab coats. 65 Cells are plated in clear bottom black walled 96 well tissue culture treated assay plates for differentiation at a concentra-

168

tion of about 50,000 cells/mL. AARS polypeptides at a final concentration of 250 nM per well (or as otherwise indicated in the Examples below) are added to each assay well. All cells are maintained in growth media for 2 days with the exception of the positive controls which are stimulated with adipogenic differentiation media (Cell Applications Cat #811D-250). Cells are exposed to AARS polypeptides for 48 hours. Cell adhesion molecules including soluble VCAM and/or ICAM are measured using a standard ELISA kit from RND Systems (Cat # DY643 and DY720 respectively). Proliferation is assessed with Resazurin as described previously by adding fresh media containing Resazurin to plates following supernatant removal and incubating for three hours at 37° C. Plates are read on a fluorescent plate reader and viability/proliferation is expressed as a function of resorufin associated fluorescence of AARS polypeptide treated wells divided by resorufin associated fluorescence of PBS only treated wells. Fresh media is added and differentiation is maintained for 16 days post initial media exchange, with fresh media exchanged every other day to maintain cell health. On day 15, cells are placed in serum free media. On day 16, differentiation to mature adipocytes is assessed with Nile Red (Invitrogen, concentration of 3 µM final) staining and quantified with a fluorescent plate reader with the appropriate wavelengths. To perform this assay cells are fixed with 10% paraformaldehyde, washed in PBS and permeabilized in PBS containing 0.5% BSA and 0.1% Triton X-100. Cell proliferation is assessed with an intensity measurement on a fluorescent reader with Hoechst dye 33432 at a concentration of 1 ug/mL final, as described previously. Adipogenesis is expressed as intensity of Nile Red signal. Hoechst dye signal is used to assess cellular number. Human Skeletal Muscle Cell Differentiation and Prolifera-

Background and Therapeutic Relevance:

The development of skeletal muscle is a multistep process that involves the determination of pluripotential mesodermal cells to give rise to myoblasts, withdrawal of the myoblasts from the cell cycle and differentiation into muscle cells, and finally growth and maturation of skeletal muscle fibers. Skeletal muscle differentiation involves myoblast alignment, elongation, and fusion into multinucleate myotubes, together with the induction of regulatory and structural muscle-specific genes. At the molecular level, myogenic commitment and muscle-specific gene expression involve the skeletal muscle-specific helix-loop-helix (bHLH) MyoD family of proteins, which includes MyoD, myogenin, myf-5, and MRF4, and the myocyte enhancer-binding factor 2 (MEF2). The DNA binding activity of MyoD family proteins is attenuated by Id, which forms complexes with E2a gene products in proliferating cells and is down-regulated when they are induced to differentiate. The decision to differentiate into myotubes is influenced negatively by several factors. Treatment of myoblasts with fetal bovine serum, basic fibroblast growth factor 2, or transforming growth factor $\beta 1$ is known to inhibit differentiation of myoblasts. Myogenesis is also regulated negatively by oncogenes such as c-myc, c-jun, c-fos, H-ras, and E1a. There is very little information regarding the signaling that is triggered in the myoblast upon serum withdrawal which leads to the induction of the MyoD family gene expression and to muscle differentiation. Myogenic differentiation appears to depend on the activation of integrins present on the plasma membrane of myoblasts suggesting the operation of an "outside-in" biochemical pathway in which integrin is the upstream molecular species. Interactions of insulin-like growth factor (IGF)-I and -II with their receptors are also positive regulators of skeletal muscle differentiation.

Accordingly AARS polypeptides with the ability to modulate muscle development have therapeutic utility in a broad range of diseases including for example, the treatment of metabolic disease, cachexia, various muscle wasting conditions, as well as musculoskeletal disease where muscle atrophy plays a key role in the pathogenesis and symptomology. Human Skeletal Muscle Cells (HSkMC) can undergo differentiation to exhibit actin and myosin myofilaments. HSkMC have been used in the study of genetic muscular diseases such as Malignant Hyperthermia. HSkMC also have the potential to act as a cardiac graft, mending damage to the heart, and thus AARS polypeptides with the ability to modulate muscle development also have utility as in vitro and in vivo regulators of myogenesis.

Methods:

To assess the potential role of AARS polypeptides in this process, a standard assay of skeletal muscle cell differentiation was employed. For this assay, Human Adult Skeletal Muscle Cells (HSkMC, Cell Application Cat #150-05f) are 20 isolated from healthy human donors from limbal skeletal muscle. Cells are maintained in HSkMC Growth Medium (Cell Applications, Cat #151-500). These cells can be cultured and propagated for at least 15 population doublings. For differentiation, cells are maintained in growth media for one 25 passage and then plated at 50,000 cells per mL media in to 96 well clear bottom black walled TC treated plates treated with collagen at 100 µL per well. Cells are allowed to adhere overnight. AARS polypeptides in PBS, or PBS alone, is added to each well at a final concentration of 250 nM protein (or as otherwise indicated in the examples below). Control wells received the same volume of Differentiation Media (Cell Applications Cat #151D-250) at this time. Cells are incubated with protein or differentiation media for 48 hours. At 48 hours, cell culture supernatant is collected from all wells and differentiation media is added at a volume of 150 µL to the entire plate with the exception of control wells which are maintained in growth media only. Supernatant is utilized to assess cytokine production including IL6 and IL8 as 40 described previously. Proliferation is assessed with Resazurin as described previously by adding fresh media containing Resazurin to plates following supernatant removal and incubating for three hours at 37° C. Cells are monitored under the microscope and media is exchanged for fresh Differentiation 45 media every 2 days. On Day 10, media is removed and cells are fixed with 10% paraformaldehyde for 30 minutes. Cells are permeabilized with 0.1% Triton X-100 in PBS for 15 minutes and cells are stained with TR-Labeled phalloidin and Hoechst 33432 (as described previously) to define actin and 50 nuclei respectively. Nuclear intensity is used to determine cell proliferation in each well and phalloidin intensity is used to determine total actin content. Cells are also stained with alpha actin skeletal muscle antibody (GenTex Cat # GTX101362). Digital photos using a fluorescent microscope as well as 55 visual inspections and scoring are made of all wells. Human Bone Marrow Mesenchymal Stem Differentiation

Background and Therapeutic Relevance:

and Proliferation.

Mesenchymal stem cells (MSCs) are multipotent stem 60 cells that can differentiate into a variety of cell types, including osteoblasts, chondrocytes, myocytes, adipocytes, betapancreatic islets cells, and potentially, neuronal cells. Many different events contribute to the commitment of the MSC to other lineages including the coordination of a complex network of transcription factors, cofactors and signaling intermediates from numerous pathways. MSCs are of intense

170

therapeutic interest because they represent a population of cells with the potential treat a wide range of acute and degenerative diseases.

Moreover AARS polypeptides with the ability to modulate the differentiation of MSCs into different developmental pathways have significant therapeutic utility to enable the in vitro or in vivo modulation of hematopoiesis, neurogenesis, myogenesis, osteogenesis, and adipogenesis, as well as in a broad range of disorders and diseases, including for example inflammatory responses, autoimmunity, cancer, neuronal degeneration, muscular dystrophy, osteoporosis, and lipodystrophy. Human MSCs are immuno-privileged, and represent an advantageous cell type for allogenic transplantation, reducing the risks of rejection and complications of transplantation. Recently, there have also been significant advances in the use of autologous mesenchymal stem cells to regenerate human tissues, including cartilage and meniscus, tendons, and bone fractures. Many studies have also investigated the use of MSCs for gene therapy, including transplantation of MSCs transfected with vascular endothelial growth factor for the improvement of heart function after MI in rats, MSCs as vehicles for interferon-β delivery into tumors in mice and gene therapy with MSCs expressing BMPs to promote bone formation. Accordingly due to the intense interest as MSCs as direct and modified therapeutics, as well as the potential of AARS polypeptides to act as therapeutic agents to regulate the differentiation of MSCs in vivo, AARS polypeptides were tested as potential inducers of MSC proliferation and differentiation.

Methods:

hMSC (human marrow stromal cells) (Cell Application Cat #492-05f) are maintained according to vendor instructions. For culturing, cells are thawed quickly, and transferred immediately into 15 mL of Marrow Stromal cell Growth Medium (Cell Application Cat #419-500) and plated into a standard sterile tissue culture treated flask. Media is replaced with fresh Marrow Stromal cell Growth Medium every other day until cells are >60% confluent. Cells are grown at 37° C., 5% CO₂, in a humidified environment and utilized in BSL2 certified tissue culture hoods using sterile technique and appropriate personal protective equipment including goggles, gloves and lab coats. Cells are plated in clear bottom black walled 96 well tissue culture treated assay plates for differentiation at a concentration of 50,000 cells/mL. tRNA synthetase derived proteins at a final concentration of 250 nM per well (or as otherwise specified in the Examples below) are added to each assay well. All cells are maintained in growth media for 2 days with the exception of the positive controls, which was stimulated with osteogenic or chonodrogenic differentiation media (StemPro, Invitrogen, Cat # A10072-01 and A10071-01 respectively). Cells are exposed to AARS polypeptides for 48 hours. Soluble VCAM is measured using a standard ELISA kit from RND Systems (Cat # DY643). Proliferation is assessed with Resazurin as described previously by adding fresh media containing Resazurin to plates following supernatant removal and incubating for three hours at 37° C. Plates are read on a fluorescent plate reader and viability/proliferation is expressed as a function of resorufin associated fluorescence of AARS polypeptide treated wells divided by resorufin associated fluorescence of PBS only treated wells. Following an assessment of cell viability, resazurin is removed with two media exchanges and 0.5× differentiation media is added to all wells. Differentiation is monitored by visual inspections of all wells for 10 days post media exchange, with fresh media exchanged every other day to maintain cell health. Differentiation was assessed with alkaline phosphatase staining using ELF-97 stain (Invitrogen

Cat# E6601) at day 10 post first differentiation exchange. (Yang et al, Nature Protocols (6) 187-213 (2011) doi: 10.1038/nprot.2010.189).

Human Pulmonary Artery Smooth Muscle Cell (hPASMC) Proliferation and Differentiation.

Background and Therapeutic Relevance:

Pulmonary artery smooth muscle cells (PASMCs) in normal human adult lung blood vessels are mostly quiescent, non-migratory and are largely committed to executing their contractile function in the lung. However, PASMCs are not 10 terminally differentiated and possess the ability to modulate their phenotype and exit their quiescent state in response to changing local environmental cues. This differentiation state may occur in development, tissue injury, and vessel remodeling in response to changes in tissue demand. Pulmonary 13 hypertension (PH) is associated with a variety of underlying conditions including an increase in peripheral pulmonary vascular resistance as a result of increased vascular tone and PASMC contractility and vascular remodeling. Vascular remodeling involves PASMC growth, synthesis of matrix 20 material, and alterations in cell-cell and cell-matrix interactions in the walls of small pulmonary arteries (PAs), which lead to increased thickness of the smooth muscle component of the vessel wall and abnormal muscularization of the normally nonmuscularized, distal PAs. This process contributes 25 to reduced lumen diameter and increased peripheral resistance. Although the precise role of the PASMCs in the initial cause of the disease is controversial, the changes that occur play a key role in the clinical consequences of the disease. A crucial step in studying cellular differentiation is identifying 30 a set of cell-specific or cell-selective genes that contribute to the differentiated function(s) of the cell. A variety of smooth muscle cell (SMC) genes have been identified that serve as useful markers of the relative state of differentiation or maturation of the vascular SMCs, such as SM alpha-actin, SM 35 MHC, h1-calponin, SM22-alpha, desmin, metavinculin, smoothelin and others. The most widely used marker is SM alpha-actin, partially because of the commercial availability of a number of very high-affinity and highly selective antibodies for this protein. Whether changes in PASMCs result 40 from their inherent characteristics or from dysregulation of molecular events that govern PASMC growth remains an open question. However determining the regulatory cues and managing potential dis-regulation provides significant therapeutic insight to managing a variety of vascular and pulmo- 45 nary diseases including pulmonary hypertension, vascular diseases.

Thus AARS polypeptides which have the ability to modulate the differentiation and/or proliferation of normal human PASMCs derived from adult humans have therapeutic utility 50 in a variety of vascular and pulmonary diseases including inflammatory and obstructive lung diseases including for example, pulmonary hypertension, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and asthma.

Methods:

HPASMC (Cell Applications Cat #352-05a) are maintained in HPASMC growth media (Cell Applications Cat #352-05a) in 15 mL medium in 125 mL flasks for 1 passage before use. Cells are maintained at 37° C., 5% CO₂, in a humidified environment and utilized in BSL2 certified tissue 60 culture hoods using sterile technique and appropriate personal protective equipment including goggles, gloves and lab coats. An 80 μ L volume of cells is plated on collagen coated overnight in growth medium at a cell density of 50,000 cells/ mL. AARS polypeptides were added in sterile PBS to each 65 well at a final concentration of 250 nM (or as otherwise specified in the Examples below). Control wells held only an

172

equivalent volume of PBS. Positive control samples were incubated with vendor supplied HPASMC differentiation media (Cell Applications Cat #311D-250). Cells are exposed to AARS polypeptides or PBS in basal media (Cell Applications Cat #310-470) for 48 hours followed by a media exchange to differentiation media for the entire plate. Supernatant is collected and utilized to assess cytokine production including IL6 and IL8 as described previously. Proliferation is assessed with Resazurin as described previously by adding fresh media containing Resazurin to plates following supernatant removal and incubating for three hours at 37° C. Cells are monitored for 10 days with a media exchange every other day. Differentiation is assessed after fixation as described above, and permeabilization with 0.1% Triton X-100, by quantifying staining to smooth muscle actin-alpha staining using an anti-SMA-alpha antibody (GeneTex #GTX101362) and an Alexa 405 conjugated secondary antibody. Proliferation is assessed with Hoechst staining after cell fixation in 10% formaldehyde for 30 minutes. Hoechst dye is read using a bottom reading fluorescent plate reader with an excitation wavelength (Ex) of 405 nm, and an emission wavelength (Em) of 450 nm. Total actin staining is assessed via the use of an Alexa-488 labeled phalloidin stain (Invitrogen Cat# A12379).

Analysis of the Binding of AARS Polypeptides to Cells (Assays H1-H10 in the Data Tables Below)

Background and Therapeutic Relevance:

The binding of AARS polypeptides to specific cell types demonstrates that the cell type in question expresses specific receptors for the AARS polypeptide in question. Depending upon the cell type in question, cell binding implies a potential role for the AARS polypeptide in regulating the activity or behavior of the cell, or similar types of cell, in vivo. Specific examples of such regulatory roles include for example, the binding and modulation of B-cells and T-cells (immuno-modulation/chemotaxis/autoimmunity/inflammation); HepG2 cells (control of metabolism, cholesterol uptake or metabolism); THP-1, jurkat, Raji cells (immunomodulation/chemotaxis/autoimmunity/inflammation), platelets (thrombopoiesis), 3T3L1 adipocytes (lipogenesis/metabolism), and C2C12 mouse myoblasts (myogenesis, osteogenesis). Binding to Blood Cells

Methods:

Blood is collected in EDTA tubes from healthy donors. 2 mL whole blood is placed into 5 mL Falcon FACS tube. 2 mL of staining buffer (PBS+2% FBS) is added, vortexed 3-5 seconds, centrifuged for 5 minutes at 300×g. The supernatant aspirated, the wash repeated, and the pellet resuspended in 2 mL of staining buffer.

100 µl of washed blood is transferred to clean 5 mL FACS sample tubes. His6- or V5-His6-tagged AARS polypeptides are added to tubes at the concentrations indicated in the specific experiments outlined below and incubated on ice for 45 minutes. After incubation, antibodies for the different cell type surface markers (BD Pharmigen Cat Nos. 560910, 555398, 555415, 340953, 560361), and FITC labeled anti-V5 tag antibody (V5-FITC, Invitrogen Cat # R96325) or FITC labeled anti-His6 antibody (AbCam Cat #ab1206) are added to tubes, incubated in the dark on ice 30 minutes. After incubation 2 mL of BD FACS Lysing Solution (cat #349202) was added to tubes. Samples are vortexed, and placed on ice for 15 minutes. Samples are washed with 1×2 mL PBS and resuspended in 2 mL of 2% formaldehyde in PBS prior to FACS analysis. AARS polypeptides that bind greater than 25% of a cellular population, where antibody alone has no significant signal, is deemed a hit.

Platelet Binding Assays:

 $50~\mu L$ of washed blood is transferred to clean 5 mL FACS sample tubes, His6- or V5-His6-tagged AARS polypeptides are added to tubes at the concentrations indicated in the specific experiments outlined below and tubes are placed on ice $_5$ for 45 minutes. $20~\mu L$ CD61 pan platelet antibody (BD Pharmigen, Cat #555754) and 0.5 μL anti-V5-FITC labeled antibody (Invitrogen, R96325) or FITC labeled anti-His6 antibody (AbCam Cat #ab1206) are added to each tube. Tubes are placed on ice and protected from light for 30 minutes. Samples are brought up to a total volume in 2 mL of 1% formaldehyde in PBS and analyzed by flow cytometry within 24 hours. AARS polypeptides that bind greater than 25% of a cellular population, where antibody alone has no significant signal, is deemed a hit.

Binding to Cells in Culture:

Approximately 1×10⁶ cells in 100 μL complete RPMI medium are placed into 5 mL FACS tubes. His6- or V5-His6tagged AARS polypeptides are added to tubes at the concentrations indicated in the specific experiments outlined below 20 and tubes are placed on ice for 45 minutes. Cell samples are washed twice with 1 mL staining buffer (PBS+2% FBS), and then 0.5 µL of anti-V5-FITC antibody (Invitrogen R96325) or FITC labeled anti-His6 antibody (AbCam Cat #ab1206) in staining buffer with 200 µg/mL human IgG, is added and the 25 samples incubated on ice, protected from light, for 30 minutes. Samples are washed twice with 1 mL staining buffer, and then brought up to a total volume in 2 mL of 1% formaldehyde in PBS and analyzed by flow cytometry within 24 hours. AARS polypeptides that bind greater than 25% of a 30 cellular population, where antibody alone has no significant signal, is deemed a hit.

Animal Studies: Modulation of Haematopoiesis and Circulating Cytokines

Background and Therapeutic Relevance:

Hematopoiesis (alternatively haemopoiesis or hemopoiesis) is the formation of blood cellular components. All cellular blood components are derived from haematopoietic stem cells (HSCs) which reside in the medulla of the bone (bone marrow) and have the unique ability to give rise to all of the 40 different mature blood cell types. HSCs are self renewing: when they proliferate, at least some of their daughter cells remain as HSCs, so the pool of stem cells does not become depleted. The other daughters of HSCs (myeloid and lymphoid progenitor cells), however can each commit to any of 45 the alternative differentiation pathways that lead to the production of one or more specific types of blood cells, but cannot themselves self-renew. A change in the blood components in response to exposure to an AARS polypeptide therefore suggests that the AARS polypeptide is capable of modu- 50 lating hematopoiesis, and regulating the development of haematopoietic stem cells.

All blood cells can be divided into three lineages; Erythroid cells, lymphocytes and myelocytes.

Erythroid cells are the oxygen carrying red blood cells. 55 Both reticulocytes and erythrocytes are functional and are released into the blood. Accordingly a reticulocyte count estimates the rate of erythropoiesis, and a change in red blood cell count suggests that an AARS polypeptide modulates erythropoiesis. 60

Lymphocytes are the cornerstone of the adaptive immune system. They are derived from common lymphoid progenitors. The lymphoid lineage is primarily composed of T-cells and B-cells (types of white blood cells). Accordingly a change in white blood cell count or composition in response 65 to exposure to an AARS polypeptide suggests that that the AARS polypeptide modulates lymphopoiesis.

174

Myelocytes, which include granulocytes, megakaryocytes and macrophages, and are derived from common myeloid progenitors, are involved in a variety of roles, including innate immunity, adaptive immunity, and blood clotting. Accordingly a change in myeloid cell count or composition in response to exposure to an AARS polypeptide suggests that that the AARS polypeptide modulates myelopoiesis. The same rationale can be used to establish whether the AARS polypeptides modulate granulopoiesis, by measuring changes in granulocyte number in response to exposure to the AARS polypeptides. A role for the AARS polypeptide in modulating megakaryocytopoiesis may be inferred by a change in megakaryocyte or platelet composition or number in the blood.

Cytokine release in either wild type mice, or in various animal model systems of inflammation, provides an initial assessment of the potential ability of the AARS polypeptides to modulate inflammatory responses. The role of AARS polypeptides in modulating acute chronic inflammatory processes for example, can be readily assessed using a mouse model of diet induced obesity (DIO). The DIO model centers upon placing rodents on a high fat diet for several months leading to increased obesity, insulin resistance and immune system dysfunction. A particular consequence of this immune system dysregulation results in increased production of proinflammatory cytokines in DIO animals leading to a condition of chronic systemic inflammation. There is a growing body of evidence suggesting that low grade inflammation contributes to the development and maintenance of obesity and a diabetic phenotype that is similarly observed in the human condition termed metabolic syndrome. As such, the ability of AARS polypeptides to modulate the immune system and restore homeostatic balance towards a resolution of this chronic inflammatory state would be particularly beneficial in numerous diseases and disorders including but not limited to the treatment and prevention of the symptoms and side effects of metabolic disease, diabetes, cardiovascular diseases, atherosclerosis, obesity, as well as various autoimmune diseases and disorders, including for example, multiple sclerosis, vascular and allergic disorders.

Methods:

Male wild type control (C57BL/6) or diet induced obesity mice (C57BL/6NHsd) are purchased from Harlan (Indianapolis, Ind.) and housed individually. DIO mice are fed a high fat diet (Cat. #TD.06414-60% kcal from fat) and control mice are fed a normal diet (Cat. #2018S-18% kcal from fat). DIO mice are placed on the high fat diet starting at 6 weeks of age for a total of 10 weeks. Both DIO and control mice are allowed to feed and drink ad libitum. At 16 weeks of age, mice are sorted and randomized into groups of 5 animals based on weight. On day 2, mice are weighed and tail vein bled (100 μL) for pre-treatment complete blood count (CBC) analysis. On day 1, mice are weighed and intravenously injected via the tail vein with vehicle (PBS) or individual AARS polypeptides at 10 mg/kg. Four hours post-injection, mice are facial vein bled (150-200 μL) for subsequent cytokine analysis. On days 2, 3, & 4, mice are intravenously dosed as on day 1. On day 5, mice are weighed, terminated and blood are collected by heart puncture for Complete Blood Count (CBC analysis) (plasma-60 EDTA) and cytokine examination (serum).

CBC and Cytokine Analysis:

Complete blood counts are analyzed from blood draws preceding injections (day -2) and 24 hours after the final injection (day 5). CBC values are assessed for total white blood cell counts and overall red blood cell morphology. White blood cells are further characterized by total and fractional percentage of neutrophils, lymphocytes, monocytes,

eosinophils, & basophils. Red blood cell breakdown included measurements of hemoglobin (dL), hematocrit (%), mean corpuscular volume (fL), mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration (%), and total platelet count $(10^3/\mu L)$. CBC analysis is performed by Antech Diagnostics (Fishers, Ind.).

Circulating cytokine levels are examined at 4 hours postinjection (day 1) and 24 hours after the final injection (day 5). Serum is isolated, snap frozen and sent to Rules Based Medicine (Austin, Tex.) for multi-analyte profiling. Serum samples are analyzed using the RodentMap panel encompassing 59 unique biomarkers including Apo A-1, CD40, CD40-L, CRP, ET-1, eotaxin, EGF, Factor VII, fibrinogen, FGF-9, FGF-basic, GST-α, GCP-2, GM-CSF, KC/GROα, 15 haptoglobin, IgA, IFNγ, IP-10, IL-1α, IL-1β, IL-10, IL-11, IL-12p70, Il-17A, IL-18, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, LIF, lymphotactin, M-CSF-1, MIP-1α, MIP-1β, MIP-1γ, MIP-2, MIP-3β, MDC, MMP-9, MCP-1, MCP-3, MCP-5, MPO, myoglobin, SAP, SGOT, SCF, RANTES, TPO, tissue 20 factor, TIMP-1, TNF-α, VCAM-1, VEGF-A, and vWF. A change in cytokine levels was counted as a hit if the cytokine increased by at least 2-fold or decreased by at least 50% compared to vehicle controls.

Example 1

Identification of Proteolytic Fragments and Products of Alternative Splicing from AARSs Using Protein Topography and Migration Analysis Platform

To identify AARS fragments from cell lines, conditioned media and tissues, samples are prepared in the following ways:

Mouse Macrophage (RAW 264.7), Cytosol and Condi- 35 tioned Media:

Cells are treated with serum free DMEM media at a density of 15×10^6 cells/flasks. After 48 hours conditioned media and cell pellets are collected and processed. 200 µg of protein from secreted and cytosolic proteomic fractions are separated 40 by SDS-PAGE and gel slices are prepared for analysis by mass spectrometry.

Mouse Pancreas Tissue:

The pancreas from three mice are chopped, dounce homogenized, and sonicated in PBS with protease inhibitors. Cytosolic proteome is isolated by centrifugation and 200 µg of protein is separated by SDS-PAGE and gel slices are prepared for analysis by mass spectrometry.

Mouse Liver Tissue:

Three mouse livers are chopped, dounced homogenized, 50 and sonicated in PBS with protease inhibitors. Cytosolic proteome is isolated by centrifugation and $200~\mu g$ of protein is separated by SDS-PAGE and gel slices are prepared for analysis by mass spectrometry.

In-gel digests are analyzed by LTQ XL ion trap mass 55 spectrometer (ThermoFisher) equipped with ultimate 3000 μLC system (Dionex). The samples are first loaded on Pep-Trap (michrom) for 10 min with 5% Acetonitrile in 0.1% formic acid using Dionex autosampler. Then the samples are analyzed with a 100 μm (inner diameter) fused silica capillary 60 column containing 10 cm of C18 resin (michrom). Peptides are eluted from the column into mass spectrometer with a flow rate of 0.45 $\mu l/min$ using a linear gradient of 5-33.5% acetonitrile in 0.1% formic acid within 110 min.

LTQ is operated in data-dependent scanning mode such 65 that one full MS scan is followed by seven MS/MS scans of the seven most abundant ions. Dynamic exclusion is enabled

176

with repeat count equals to 1, repeat duration equals to 20 seconds, exclusion list size is 300 and exclusion duration is 60 seconds.

After LC-MS/MS analysis, the raw data is searched with BioWorks3.3.1(SEQUEST) using a concatenated target/decoy variant of the mouse IPI database. The SEQUEST data are filtered and sorted with DTASelect. Tables 1, 4 and 7 show sequences identified in this way.

Example 2

Identification of Splice Variants Using Deep Sequencing

Splice variants of the aminoacyl tRNA synthetase are identified using high throughput sequencing of cDNA libraries enriched for aminoacyl tRNA synthetase transcripts. The cDNA templates are prepared from total RNA extracts of tissues such as human adult and fetal brains and enriched for aminoacyl tRNA synthetase transcripts by using primer sequences specific for all annotated exons of all annotated human aminoacyl tRNA synthetases and their associated proteins

Human Total RNAs are obtained from Clontech. For cell 25 line and mouse tissue samples, total RNAs are extracted using RNA Extract II Kit (MN). Genomic DNA is digested in the total RNA samples by DNAase I. To obtain mature messenger RNAs (mRNAs), the RNA samples are enriched twice by binding polyA+RNA and digestion of RNA without 5'-cap by 5'-phosphate dependent exonuclease. Complementary DNA (cDNA) is synthesized from mature RNAs using primers that anneal to exon sequences of aminoacyl tRNA synthetase genes. A transcriptome enriched for aminoacyl tRNA synthetase genes is amplified by multiplex PCR using the aminoacyl tRNA synthetase-exon specific cDNA and different combinations of aminoacyl tRNA synthetase-exon primers. The double-stranded aminoacyl tRNA synthetase-enriched transcriptome PCR products are enzymatically repaired at both ends before adding A-overhangs to the 3' ends of the repaired fragments. Sequencing adaptors and index sequences are then added to the aminoacyl tRNA synthetaseenriched transcriptome PCRs products to generate cDNA libraries for deep sequencing with Illumina's Multiplex Sequencing Kit. In brief, the aminoacyl tRNA synthetaseenriched transcriptome PCR products with 3'-A overhangs are ligated to the InPE adaptor oligonucleotides provided in the kits. Index sequences are added to the PCR products with InPE adaptors. To obtain enough DNA fragments for deep sequencing, the PCR products with index sequences are further amplified by PCR. Aminoacyl tRNA synthetase-enriched cDNA libraries with different indexes are pooled and sequenced using an Illumina DNA sequencing machine to get 50 base pair end reads. Sequencing reads are mapped to human or mouse genome for identification of alternative splicing events. "Splicemap" software (available for public download http://www-stat.stanford.edu/~kinfai/ SpliceMap/) is used to identify splice junctions.

Deep sequencing of these cDNAs are performed to generate about 1 million sequencing reads of about 50 nucleotides in length. The sequences specific for exons of the aminoacyl tRNA synthetases are queried against annotated exon junctions and new exon junctions are identified as alternative splicing events.

The columns in Tables 2, 5, and 8 labeled "5' exon" and "3'exon" indicate, when present, which exons are fused together in the cDNA sequence. Tables 2, 5, and 8 show sequences that were identified for alternative splice events,

transcripts containing such splice events, and the polypeptides expressed by those transcripts. Alternative splice variants identified by deep sequencing are identified in Tables 2, 5, and 8 as those ones in which there are numbers greater than zero in the columns labeled as "Sequencing reads" in the buman adult or fetal brain.

Example 3

Identification of AARS Polypeptides Using Bioinformatics

AARS protein fragments (resectin or appendacrine peptides) are identified using bioinformatics. Amino acid 15 sequences of the full length human aminoacyl tRNA synthetase are aligned with the full length amino acid sequence of its ortholog from the bacterium Escherichia coli using a program such as FASTA (available at the website http://fasta.bio- $_{20}$ ch.virginia.edu/fasta_www2/fasta_www.cgi) BLASTP program from the NCBI (available at the website http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM= blastp&BLAST PROGRAMS=blastp&PAGE TYPE= BlastSearch&SHOW DEFAULTS=on&LINK LOC= blasthom). Resectin sequences from the human proteins are identified as sequences covering regions where there are gaps in the bacterial sequence in the alignment, or regions with low homology between the two species. The peptide, and corresponding DNA sequences in Tables 3, 6, and 9 include examples identified in this way.

Example 4

Differential Expression of AARS Polypeptides Identified by Mass Spectrometry

The PROTOMAP technique is used as described in ⁴⁰ Example 1 to compare the differential expression of Methionyl tRNA synthetases in different tissues/cell types (refer to Tables 1, 4, and 7 for sequences and comparisons): Aminoacyl-tRNA synthetase resectin expression is compared between mouse liver tissue and mouse pancreas tissue. Aminoacyl-tRNA synthetase resectin expression is compared between cytosol of RAW264.7 and conditioned media from RAW264.7 cells harvested after 48 hours of serum starvation.

Example 5

Differential Expression of AARS Polypeptides Identified by Deep Sequencing

To test for differential expression of spice events, the deep sequencing is done for cDNAs prepared from different tissues

Expression of specific alternative splice events for aminoacyl tRNA synthetases is unexpected and indicates biological importance. The variation in relative number of reads seen in the deep sequencing of different transcriptome samples indicates that alternative splice events of aminoacyl tRNA synthetases are differentially regulated and not just artifacts due to sample handling.

178

Example 6

Antibody Screening

To facilitate the discovery of antibodies displaying preferential binding to specific aminoacyl tRNA synthetase fragments (e.g., ≥ 10 -fold higher affinity when compared to the parental full length enzyme), a human antibody phage display library is screened by AbD Serotec (a division of MORPHO-SYSTM, Martinsried/Planegg, Germany) using affinity enrichment techniques (panning). Antibodies enriched after multiple rounds of screening with the aminoacyl tRNA synthetase fragments are subsequently characterized by ELISA for reactivity to the fragments, and to the parental, full length enzyme. Clones demonstrating preferential binding (e.g., ≥ 10 -fold higher affinity) to the aminoacyl tRNA synthetase fragments are further characterized.

If the necessary specificity is not achieved at the end of this process, subtraction strategies, such as pre-adsorption steps with the full length enzyme and/or counter-screening, are used to eliminate cross reacting antibodies and drive the selection process towards the unique epitope(s) on the aminoacyl tRNA synthetase fragments.

Example 7

Identification of Splice Variants Using Systematic PCR

cDNA templates for PCR reactions are reverse transcribed $_{35}$ from total RNA extracts of tissues or cells (e.g., human brain, IMR-32 and HEK293T). PCR reactions are performed using aminoacyl tRNA synthetase specific primers, pairing a forward primer (FP1) designed to anneal to the 5' untranslated region or exons in the 5' half of the gene with a reverse primer (RP1) designed to anneal to exons in the 3' half of the gene or the 3'UTR. Amplified DNA products are analyzed by agarose gel electrophoresis to identify PCR products that are a different size then the fragment amplified form the canonical transcripts. These different PCR products are excised and purified from the gel and ligated into a standard cloning vector for DNA sequence analysis. Alternative splicing variants are identified as different sequences from the canonical transcripts. Splice variants identified by this systematic PCR approach are shown in Tables 2, 5 and 8.

Example 8

Codon Optimization of Selected AARS Polynucleotides

Representative AARS polypeptides (summarized in Table E2) are selected for further biochemical, biophysical and functional characterization based on one or more of the following criteria, i) the identification of AARS polypeptide proteolytic fragments, ii) the identification of AARS polypeptide splice variants, iii) the identification of AARS polypeptides by bioinformatic analysis, iv) evidence of differential expression of specific AARS polypeptides, v) the domain structure of the AARS protein, vi) the size of the AARS polypeptide, and vii) the minimization of similar duplicative sequences.

179

TABLE E2

Summary of AARS Polypeptides Selected for Codon Optimization and Bacterial

AARS Polypeptide Name	SEQ. ID Nos. for Epitope Tagged AARS polypeptides	SEQ. ID. Nos. for AARS Polynucleotides	Residues of AARS protein	Location of epitope tag	Cloning/ synthesis method used
MetRS ^{N1}	SEQ. ID. NO. 68	SEQ. ID. NO. 90	1-231	N-	1
MetRS^{N1}	SEQ. ID. NO. 69	SEQ. ID. NO. 90	1-231	terminal C-	1
MetRS ^{N2}	SEQ. ID. NO. 70	SEQ. ID. NO. 91	1-263	terminal N-	1
MetRS ^{N2}	SEQ. ID. NO. 71	SEQ. ID. NO. 91	1-263	terminal C-	1
MetRS ^{N3}	SEQ. ID. NO. 72	SEQ. ID. NO. 92	1-67 + 48	terminal N-	1
MetRS ^{N3}	SEQ. ID. NO. 73	SEQ. ID. NO. 92	aa 1-67 + 48	terminal C-	1
MetRS ^{N4}	SEQ. ID. NO. 74	SEQ. ID. NO. 93	aa 1-364 + 63	terminal N-	1
MetRS ^{N4}	SEQ. ID. NO. 75	SEQ. ID. NO. 93	aa 1-364 + 63	terminal C-	1
MetRS ^{N6}	SEQ. ID. NO. 76	SEQ. ID. NO. 94	aa 1-545 + 2	terminal N-	1
MetRS ^{N6}	SEQ. ID. NO. 77	SEQ. ID. NO. 94	aa 1-545 + 2	terminal C-	1
MetRS ^{N9}	SEQ. ID. NO. 78	SEQ. ID. NO. 95	aa 1-197	terminal N-	1
MetRS ^{N9}	SEQ. ID. NO. 79	SEQ. ID. NO. 95	1-197	terminal C-	1
	-	•		terminal	
MetRS ^{N10}	SEQ. ID. NO. 80	SEQ. ID. NO. 96	1-214	N- terminal	1
MetRS ^{N10}	SEQ. ID. NO. 81	SEQ. ID. NO. 96	1-214	C- terminal	1
MetRS ^{N11}	SEQ. ID. NO. 82	SEQ. ID. NO. 97	1-221	N- terminal	1
MetRS ^{N11}	SEQ. ID. NO. 83	SEQ. ID. NO. 97	1-221	C- terminal	1
MetRS ^{N12}	SEQ. ID. NO. 84	SEQ. ID. NO. 98	1-67 + 47 aa	N- terminal	1
MetRS^{N12}	SEQ. ID. NO. 85	SEQ. ID. NO. 98	1-67 + 47	C-	1
MetRS^{N13}	SEQ. ID. NO. 86	SEQ. ID. NO. 99	aa 1-221 + 55	terminal N-	1
MetRS^{N13}	SEQ. ID. NO. 87	SEQ. ID. NO. 99	aa 1-221 + 55	terminal C-	1
MetRS^{N14}	SEQ. ID. NO. 88	SEQ. ID. NO.	aa 1-257 + 16	terminal N-	1
MetRS^{N14}	SEQ. ID. NO. 89	100 SEQ. ID. NO.	aa 1-257 + 16	terminal C-	1
		100	aa	terminal	
MetRS ^{C2}	SEQ. ID. NO. 165	SEQ. ID. NO. 173	773-900	N- terminal	1
MetRS ^{C2}	SEQ. ID. NO. 166	SEQ. ID. NO. 173	773-900	C- terminal	1
MetRS ^{C3}	SEQ. ID. NO. 167	SEQ. ID. NO. 174	552-900	N- terminal	1
MetRS ^{C3}	SEQ. ID. NO. 168	SEQ. ID. NO. 174	552-900	C- terminal	1
MetRS ^{C4}	SEQ. ID. NO. 169	SEQ. ID. NO.	8 aa + 586-900	N-	1
MetRS ^{C4}	SEQ. ID. NO. 170	175 SEQ. ID. NO.	8 aa + 586-900	terminal C-	1
MetRS ^{C5}	SEQ. ID. NO. 171	175 SEQ. ID. NO.	846-900	terminal N-	1
MetRS ^{C5}	SEQ. ID. NO. 172	176 SEQ. ID. NO.	846-900	terminal C-	1
	52. 15. 110. 172	176	510 200	terminal	1

Polynucleotides encoding the selected AARS polypeptides listed in Table E2, along with the appropriate N or C-terminal epitope tag, are synthesized and cloned as described in the General Materials and Methods section using the gene syn-5 thesis methodology listed in Table E2.

Example 9

Small Scale Bacterial Expression and Purification

The AARS polypeptides listed in Table E2 are expressed in $E.\ coli.$ as described in the General Materials and Methods section. The relative expression of soluble and inclusion body localized AARS polypeptides is summarized in Table E3 20 below.

TABLE E3

AARS Polypeptide	Location of Epitope Tag	Amount of Protein Recovered from Soluble Fraction	Amount of Protein Recovered from Inclusion Bodies
$MetRS^{N1}$	N-terminal	+	+
$MetRS^{N1}$	C-terminal	+	+
MetRS ^{N2}	N-terminal	+	+
$MetRS^{N2}$	C-terminal	+	+
MetRS ^{N3}	N-terminal	+	+
MetRS ^{N3}	C-terminal	+	+
MetRS ^{N4}	N-terminal	+	+
$MetRS^{N4}$	C-terminal	+	+
MetRS ^{N6}	N-terminal	+	+
$MetRS^{N6}$	C-terminal	+	+
MetRS ^{N9}	N-terminal	+	++
MetRS ^{N9}	C-terminal	+	+
$MetRS^{N10}$	N-terminal	+	+
$MetRS^{N10}$	C-terminal	+	+
$MetRS^{N11}$	N-terminal	+	+
$MetRS^{N11}$	C-terminal	+	+
$MetRS^{N12}$	N-terminal	+	+
$MetRS^{N12}$	C-terminal	+	+
MetRS ^{N13}	N-terminal	+	+

182
TABLE E3-continued

	Summary	<u>of AARS Polypept</u>	ide Bacterial Expressi	ion Characteristics
5	AARS Polypeptide	Location of Epitope Tag	Amount of Protein Recovered from Soluble Fraction	Amount of Protein Recovered from Inclusion Bodies
.0	MetRS ^{N13} MetRS ^{N14} MetRS ^{N14}	C-terminal N-terminal C-terminal	+ + +	+ + + +
	MetRS ^{C2} MetRS ^{C2} MetRS ^{C3}	N-terminal C-terminal N-terminal	+	ND ND ND
.5	MetRS ^{C3} MetRS ^{C4}	C-terminal N-terminal	+ + +	ND ND
	MetRS ^{C4} MetRS ^{C5} MetRS ^{C5}	C-terminal N-terminal C-terminal	+++	ND ND ND
	Metro	C-terminar	++	ND

[&]quot;+" represents 0-1 mg/L AARS polypeptide expression

Surprisingly, the protein expression data demonstrates the existence of at least one protein domain that exhibits high level expression of soluble protein when expressed in *E. coli*. Specifically the data demonstrates that the AARS polypeptide MetRS1^{c5}, (amino acids 846-900), defines the boundary of a novel protein domain that is highly expressed in *E. coli*.

Example 10

Large Scale Production of AARS Polypeptides

Representative AARS polypeptides are prepared in larger amounts to enable further functional and biophysical characterization. The AARS polypeptides listed in Table E4 are expressed in *E. coli*. in large scale culture as described in the
 General Materials and Methods section. The yields, and specified biophysical characteristics for each expressed soluble protein are summarized below in Table E4.

TABLE E4

	Summary of	representative	AARS P	olypeptides y	vield and bio	physical char	racterization	
AARS Poly- peptide	Location of Epitope Tag	Yield [mg/L] ⁽¹⁾	Purity [%]	Endotoxin [EU/mg]	Molecular Weight	Working stock conc [mg/ml]	Stability [percent recovery] ⁽²⁾	Aggregation
MetRS ^{C5}	N-terminal	0.5	80	13.4	ND	2.6	ND	ND

Notes

35

Key:

ND: Not Determined

[&]quot;++" represents 1-5 mg/L AARS polypeptide expression;

[&]quot;+++" represents 5-10 mg/L AARS polypeptide expression;

[&]quot;++++" represents 10-15 mg/L AARS polypeptide expression; "+++++" represents ≥15 mg/L AARS polypeptide expression;

ND: not determined

 $^{^{(1)}}$ Yield determined by measuring protein recovery after last purification step

 $[\]ensuremath{^{(2)}}\xspace$ Determined as percent recovery of non aggregated protein after 1 week at 25° C.

183

The results from these studies establish that representative AARS proteins from the MetRS1^{C5} family of AARS proteins exhibit reasonable initial protein expression yields and solubility characteristics.

Example 11

Transcriptional Profiling of Representative AARS Polypeptides

To test for the ability of the AARS polypeptides to modulate gene expression, selected AARS polypeptides were incubated with Mesenchymal stems cells or human skeletal 1 muscle cells for the times and at the concentrations shown in Table E5.

TABLE E5

Transcriptional profiling of representative	
AARS Polypeptides in Mesenchymal Stem Cells	
(MSC) or Human Skeletal Muscle Cells (HSkMC)	

Test Sample Description		Cell type and Exposure Time				
AARS Polypeptides	Location of Epitope Tag	Concen- tration nM	MSC 24 hours	MSC 72 hours	HSkMC 24 hours	HSkMC 72 hours
MetRS ^{C5}	N-terminal	250	0	1	10	8
MetRS ^{CS}	C-terminal	250 Controls	1	7	8	7
Average across polypeptides sc		3	5	6	7	
Osteogenesis co		17	20	11	16	
Chondrogenesis		17	19	14	19	
Adipogenesis co		19	15	16	18	
SKMC Pos Ctrl		11	8	5	4	
Untreated			0	0	1	1

In Table E5, the numbers in each column represent the number of genes which were modulated, either positively or negatively by at least 4 fold compared to the control genes, as described in the general methods section. The data shows that specific forms of the AARS polypeptides tested have the surprising ability to regulate the transcription, and hence 45 potentially modulate the developmental fate or differentiation status when added to either Mesenchymal Stem Cells (MSC) and/or Human Skeletal Muscle Cells (HSkMC). Shaded cells with bolded numbers in the table represent examples where the AARS polypeptide exhibits a significant impact on the 50 regulation of gene transcription in the cell lines and times indicated in the table.

It is concluded that MetRS1^{C5} appears to be a major regulator of Mesenchymal Stem Cell and/or human skeletal muscle cells gene expression.

Example 12

Functional Profiling of AARS Polypeptides

To test for the ability of the AARS polypeptides to modulate a range of phenotypic processes, selected AARS polypeptides were incubated with the cell types, and the 65 conditions provided in the general methods section, and Tables E5 and E6.

184

TABLE E6

Proliferation assays	
Source and cell type	Assay Number
Human megakaryocytic leukemia cells/Mo7e	A 1
Human acute promyelocytic leukemia cells/HL60	A2
Human lymphoblast (cancer cell line)/RPMI8226	A3
Human mesenchymal stem cells/hMSC	A4
Human astrocytes	A5
Human bone marrow aspirate cells/Bone Marrow Cells	A6
Human bone marrow aspirate cells/Bone Marrow Cells (Long Term Culture)	A7
Human Synoviocyte/HFLS-SynRA	A8
Human pre-adipocyte cells/hPAD	A9
Human pulmonary artery smooth muscle cell/hPASMC	A10
Human skeletal muscle cell/hSKMC	A11

Data analysis for proliferation assays was performed by dividing the numerical value in the assay well by the average PBS value for the assay plate. AARS polypeptides were considered to be proliferative if greater than 3 SD away from the PBS value in the positive direction. A tRNA synthetase derived AARS polypeptide was considered to be cytotoxic if greater than 3 SD away from the PBS value in the negative direction. A cytotoxic compound was utilized as a negative control and the average value for this was always greater than 3 SD away from PBS average value.

Cellular differentiation and phenotype assays	
Assay Description	Assay Number
Human hepatocyte (HepG2C3a cells) acetylated LDL uptake	B1

Data analysis for ac-LDL uptake assay was performed by dividing the numerical value in the assay well by the average PBS value for the assay plate. AARS polypeptides were considered to be a modulator of ac-LDL uptake if greater than 2 SD away from the PBS value in the positive or negative direction. A visual check to confirm plate reader results was made using a fluorescent microscope.

Human Neutrophil assays	
Assay Description	Assay Number
Neutrophil Elastase	C1
Neutrophil oxidative burst (agonist) Neutrophil oxidative burst (antagonist)	C2 C3

Data analysis for neutrophil assays was performed by dividing the numerical value in the assay well by the average PBS value for the assay plate. AARS polypeptides were considered to be a modulator of neutrophil elastase production or oxidative burst biology if greater than 2 SD away from the PBS value in the positive or negative direction.

	Modulation of Toll-like receptors	(TLR)
5	Assay Description	Assay Number
	TLR activation in RAW BLUE cells	D1
	TLR antagonism in RAW BLUE cells	D2
	Activation of hTLR2	D3
	Activation of hTLR4	D4

60 Data analysis for TLR modulation assays was performed by dividing the numerical value in the assay well by the average PBS value for the assay plate. AARS polypeptides were considered to be a modulator of TLR specific biology if greater than 3 SD away from the PBS value in the positive or negative direction. Positive controls. including LPS and detection reagent were always significantly

distinct and >3 SD from PBS average value.

E17

65

TABLE E6-continued

186 TABLE E6-continued

Assay Description	Assay Number
Cytokine Release	
Human Synoviocyte cytokine production (IL6 release)	E1
Human pulmonary artery smooth muscle cell (hPASMC) cytokine production (IL6 release)	E2
Human skeletal muscle cell (hSKMC) cytokine production (IL6 release)	E3
Human Astrocyte cytokine production (IL6 release)	E4
Whole blood IL6 release	E5
Human pulmonary artery smooth muscle cell (hPASMC)	E6
cytokine production (IL8release) 72 h Incubation	
IL8 production	
Human Synoviocyte cytokine production (IL8 release)	E7
Human pulmonary artery smooth muscle cell (hPASMC) cytokine production (IL8release)	E8
Human skeletal muscle cell (hSKMC) cytokine production (IL8 release)	E9
Human Astrocyte cytokine production (IL8 release)	E10
Human hepatocyte (HepG2C3a cells) IL8 release	E11
Human acute promyelocytic leukemia cells/HL60 (IL8 release)	E12
Human lymphoblast (cancer cell line)/RPMI8226 (IL8 Release) TNF alpha production	E13
Human Synoviocyte cytokine production (TNF alpha release)	E14
Whole blood TNF alpha release IL10 Release	E14
Human acute promyelocytic leukemia cells/HL60 IL10 release	E16

Human Primary Blood Mononuclear cells (IL10 Release)

Cell Adhesion and Chemotaxis		
Assay Description	Assay Number	
Monocyte THP 1/Human umbilical vein endothelial cell (HUVEC) cell adhesion	F1	45
Human hepatocyte (HepG2C3a cells) (ICAM release)	F2	
Human lung microvascular endothelial cell (HLMVEC) cell adhesion regulation (ICAM release)	F3	
Human umbilical vein endothelial cell (HUVEC) cell adhesion regulation (VCAM release)	F4	50
Human mesenchymal stem cell (hMSC) cell adhesion regulation (VCAM release)	F5	
Human skeletal muscle cell (hSKMC) cell adhesion regulation (VCAM release)	F6	
Human pulmonary artery smooth muscle cell (hPASMC) cell adhesion regulation (VCAM release)	F7	55

Data analysis for cell adhesion regulation assays was performed by
dividing the numerical value in the assay well by the average PBS value
for the assay plate. AARS polypeptides were considered to be a
modulator of cell adhesion or a regulator of biology related to cell
adhesion if a value of greater than 2 SD away from the PBS value in
the positive or negative direction was obtained. In the case of the
ELISA assays, a protein standard (specific to each assay kit) was
was run on every plate to insure good assay quality. Only assays
with protein standard curves that had an R2 value
of > than 0.9 were chosen for data analysis.

Key to Assays and criteria for indicating a hit	
Cellular Differentiation	
Assay Description	Assay Number
Human pre-adipocyte (hPAD) cell differentiation Human skeletal muscle (hSKMC) cell differentiation	G1 G2
Human mesenchymal stem (hMSC) cell differentiation	G2 G3
Human pulmonary artery smooth muscle cell (hPASMC) differentiation	G4

Data analysis for cellular differentiation assays was performed by dividing the numerical value in the assay well by the average PBS value for the assay plate. Differentiation assays were scored based upon fluorescent intensity of particular antibodies as described in the methods section. AARS polypeptides were considered to be a modulator of cellular differentiation if an intensity value for a specific marker of differentiation was greater than 2 SD away from the PBS value in the positive or negative direction in a given treated well. For the hSKMC analysis, digital photos were taken of all wells and photos were scored in a blinded fashion by three people using a 4 point scoring system where a score of "4" indicated intense skeletal muscle actin staining and obvious myotube formation and a score of "1" indicated a lack of any differentiation or a suppression of differentiation. The average value from visual scoring was used and only wells with an average value of >3 were considered hits. Differentiation control 25 treated wells in this assay typically scored >2, while PBS treated wells scored <2.

	Cell Binding	3
30	Assay Description	Assay Number
35	PBMC Primary T cell Primary B cell Primary Monocyte HepG2 3T3L1 C2C12	H1 H2 H3 H4 H5 H6 H7
	THP1 Jurkat Raji	H8 H9 H10

AARS polypeptides were considered to be binding to a particular cell type if the mean cell bound fluorescence intensity was greater than 2 SD away from the reagent control values for that cell type.

TABLE E7

	Results of Functional Profiling studies of AARS Polypeptides												
50	AARS Polypeptides	Location of Epitope Tag	Concentration [nM]	Assay Hits									
	MetRS ^{N9}	N-terminal	192	A2, A3, A5, A8, A9, A10									
				(Apoptosis) C1, C2, C3 (Neutrophil									
				Activation)									
55				D1, D2 (Modulation of									
				Toll-like receptors)									
				E1, E8 (Cytokine Release)									
				F7 (Cell Adhesion and									
				Chemotaxis)									
	3.5 m aC5		2.50	G1, G4, G3 (Differentiation)									
60	MetRS ^{CS}	N-terminal	250	E6 (Cytokine Release)									
	MetRS ^{C5}	C-terminal	250	G2 (Differentiation)									
	Meny	C-tenninai	230	A7, A8 (Proliferation) C1 (Neutrophil Activation)									
				G2, G4 (Differentiation)									

It is concluded that MetRS1^{N9}, and MetRS1^{C5} appear to be major regulators of apoptosis, cytokine release, neutrophil

SEQUENCE LISTING

activation, cell adhesion and chemotaxis, differentiation. When viewed in the context of the transcriptional profiling studies, the phenotypic screening data demonstrates that the AARS polypeptides MetRS1^{N9} (amino acids1-197), and MetRS1^{C5} (amino acids 846-900) define the boundaries of 5 two novel protein domains that are highly active in a broad array of phenotypic screening assays.

188

Accordingly it is concluded that AARS polypeptides comprising amino acids 1-197 and 846-900 of Methionyl tRNA synthetase define the approximate boundaries (i.e. within about +/-5 amino acids) of a two novel, highly active AARS polypeptide domains, that are i) highly functionally active, ii) can be readily made and produced in *E. coli*, and iii) exhibit favorable protein stability and aggregation characteristics.

60

<160> NUMBER OF SEQ ID NOS: 182

<210> SEQ ID NO 1

<211> LENGTH: 77

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide

<400> SEQUENCE: 1

aggaggtaaa acatatgcat catcatcatc atcacggtaa gcctatccct aaccctttgc

teggtetega ttetaeg 77

<210> SEQ ID NO 2

<211> LENGTH: 12 <212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide

<400> SEQUENCE: 2

taatgactcg ag 12

<210> SEQ ID NO 3

<211> LENGTH: 17

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide

<400> SEQUENCE: 3

aggagataaa acatatg

<210> SEQ ID NO 4

<211> LENGTH: 14

<212> TYPE: DNA

<213 > ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide

<400> SEQUENCE: 4

aggaggtaaa acat

<210> SEO ID NO 5

<211> LENGTH: 14

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide

<400> SEQUENCE: 5

aggagataaa acat 14

<210> SEQ ID NO 6

<211> LENGTH: 15

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

-continued

	FEATURE: OTHER INFORMATION: Oligonucleotide	
<400>	SEQUENCE: 6	
gaagga	gata tacat	15
	SEQ ID NO 7	
	LENGTH: 72 TYPE: DNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Oligonucleotide	
<400>	SEQUENCE: 7	
ggtaag	octa tecetaacee teteeteggt etegatteta egeaceacea teateaceat	60
taatga	actog ag	72
<210>	SEQ ID NO 8	
	LENGTH: 72 TYPE: DNA	
	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Oligonucleotide	
	SEQUENCE: 8	
	catc atcatcatca tcacggtaag cctatcccta accetetect eggtetegat	60
tctacg	ggat cc	72
	SEQ ID NO 9	
	LENGTH: 12 TYPE: DNA	
<213>	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Oligonucleotide	
<400>	SEQUENCE: 9	
ctcgag	rtaat ga	12
	SEQ ID NO 10 LENGTH: 12	
<212>	TYPE: DNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Oligonucleotide	
<400>	SEQUENCE: 10	
catatg	iggat cc	12
<210>	SEQ ID NO 11	
	LENGTH: 72	
	TYPE: DNA ORGANISM: Artificial Sequence	
<220>	FEATURE:	
<223>	OTHER INFORMATION: Oligonucleotide	
<400>	SEQUENCE: 11	
ctcgag	ggta agoctatoco taaccototo otoggtotog attotacgoa coaccaccac	60
caccac	taat ga	72
<210>	SEQ ID NO 12	
	LENGTH: 231	
	TYPE: PRT ORGANISM: Homo sapiens	

-continued

<400)> SE	EQUEN	ICE:	12												
Met 1	Arg	Leu	Phe	Val 5	Ser	Asp	Gly	Val	Pro 10	Gly	СЛа	Leu	Pro	Val 15	Leu	
Ala	Ala	Ala	Gly 20	Arg	Ala	Arg	Gly	Arg 25	Ala	Glu	Val	Leu	Ile 30	Ser	Thr	
Val	Gly	Pro 35	Glu	Asp	Сув	Val	Val 40	Pro	Phe	Leu	Thr	Arg 45	Pro	Lys	Val	
Pro	Val 50	Leu	Gln	Leu	Asp	Ser 55	Gly	Asn	Tyr	Leu	Phe 60	Ser	Thr	Ser	Ala	
Ile 65	Cys	Arg	Tyr	Phe	Phe 70	Leu	Leu	Ser	Gly	Trp 75	Glu	Gln	Asp	Asp	Leu 80	
Thr	Asn	Gln	Trp	Leu 85	Glu	Trp	Glu	Ala	Thr 90	Glu	Leu	Gln	Pro	Ala 95	Leu	
Ser	Ala	Ala	Leu 100	Tyr	Tyr	Leu	Val	Val 105	Gln	Gly	Lys	Lys	Gly 110	Glu	Asp	
Val	Leu	Gly 115	Ser	Val	Arg	Arg	Ala 120	Leu	Thr	His	Ile	Asp 125	His	Ser	Leu	
Ser	Arg 130	Gln	Asn	Сув	Pro	Phe 135	Leu	Ala	Gly	Glu	Thr 140	Glu	Ser	Leu	Ala	
Asp 145	Ile	Val	Leu	Trp	Gly 150	Ala	Leu	Tyr	Pro	Leu 155	Leu	Gln	Asp	Pro	Ala 160	
Tyr	Leu	Pro	Glu	Glu 165	Leu	Ser	Ala	Leu	His 170	Ser	Trp	Phe	Gln	Thr 175	Leu	
Ser	Thr	Gln	Glu 180	Pro	CAa	Gln	_	Ala 185	Ala	Glu	Thr	Val	Leu 190	Lys	Gln	
Gln	Gly	Val 195	Leu	Ala	Leu	Arg	Pro 200	Tyr	Leu	Gln	Lys	Gln 205	Pro	Gln	Pro	
Ser	Pro 210	Ala	Glu	Gly	Arg	Ala 215	Val	Thr	Asn	Glu	Pro 220	Glu	Glu	Glu	Glu	
Leu 225	Ala	Thr	Leu	Ser	Glu 230	Glu										
<211 <212 <213	.> LE !> T\ !> OF	ENGTH PE: RGANI	O NO H: 69 DNA ISM:	3 Homo	sa <u>r</u>	oiens	3									
atga	gact	gt t	cgto	gagto	ja to	ggcgt	cccc	g ggt	tgct	tgc	cggt	gcto	gc o	gccg	lccddd	60
agaç	ladað	gg 9	gcaga	agcag	ga gg	gtgct	cato	ago	cacto	gtag	gcc	ggaa	ıga t	tgtg	ıtggtc	120
ccgt	tcct	ga c	ccgg	geeta	ıa go	gtaad	etgto	tte	gcago	tgg	ataç	gegge	aa o	ctaco	tcttc	180
tcca	ctaç	gtg o	caato	etged	g at	attt	tttt	tte	gttat	ctg	gct	ggag	gca a	agato	gacctc	240
acta	acca	ıgt ç	ggato	ggaat	g gg	gaago	gaca	gaç	gatga	agc	cago	tttç	gtc t	gate	ccctg	300
tact	attt	ag t	ggto	ccaaç	g ca	agaa	gggg	g gaa	gato	gttc	ttgg	gttca	ıgt ç	gegga	ıgagcc	360
ctga	ctca	ıca t	tgad	ccaca	ıg ct	tgaç	gtcgt	caç	gaact	gtc	cttt	ccte	gc t	gggg	agaca	420
gaat	ctct	ag c	ccgac	catto	jt tt	tgtg	gggga	gco	cctat	acc	catt	acto	jca a	agato	ccgcc	480
taco	tece	etg a	aggag	gctga	ıg tç	gadat	gcac	ago	tggt	tcc	agad	cacto	gag t	acco	aggaa	540
ccat	gtca	igc g	gagct	gcag	ja ga	ectgt	acto	g aaa	cago	aag	gtgt	ccts	gc t	ctcc	ggcct	600
taco	tcca	aa a	agcaç	gaaa	a go	ccaç	geeec	gct	gagg	gaa	ggg	tgto	ac c	caato	gagcct	660
gagg	jagga	igg a	agcto	ggcta	ic co	ctato	ctgag	g gag	J							693

-continued

```
<210> SEQ ID NO 14
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 14
Leu Phe Val Ser Glu Gly Ser Pro Gly Ser Leu Pro Val Leu Ala Ala
                                   10
Ala Ala Arg
<210> SEQ ID NO 15
<211> LENGTH: 22
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 15
Gly Arg Ala Glu Leu Leu Ile Ser Thr Val Gly Pro Glu Glu Cys Val
Val Pro Phe Leu Thr Arg
           20
<210> SEQ ID NO 16
<211> LENGTH: 20
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 16
Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Ala Ser
                                   10
Ala Ile Cys Arg
<210> SEQ ID NO 17
<211> LENGTH: 137
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 17
Tyr Phe Phe Leu Leu Cys Gly Trp Glu Gln Asp Asp Leu Thr Asn Gln
Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Val Leu Ser Ala Ala
Leu His Cys Leu Val Val Gln Gly Lys Lys Gly Glu Asp Ile Leu Gly
Pro Leu Arg Arg Val Leu Thr His Ile Asp His Ser Leu Ser Arg Gln
Asn Cys Pro Phe Leu Ala Gly Asp Thr Glu Ser Leu Ala Asp Ile Val
Leu Trp Gly Ala Leu Tyr Pro Leu Leu Gln Asp Pro Ala Tyr Leu Pro
                           90
Glu Glu Leu Gly Ala Leu Gln Ser Trp Phe Gln Thr Leu Ser Thr Gln
Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln Gln Gly Val
                         120
Leu Ala Leu Arg Leu Tyr Leu Gln Lys
  130
<210> SEQ ID NO 18
<211> LENGTH: 12
```

```
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 18
Gln Pro Gln Pro Gln Pro Pro Pro Glu Gly Arg
1 5
<210> SEQ ID NO 19
<211> LENGTH: 214
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 19
Leu Phe Val Ser Glu Gly Ser Pro Gly Ser Leu Pro Val Leu Ala Ala
Ala Ala Arg Ala Arg Gly Arg Ala Glu Leu Leu Ile Ser Thr Val Gly
Pro Glu Glu Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val Pro Val
               40
Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Ala Ser Ala Ile Cys
                      55
Arg Tyr Phe Phe Leu Leu Cys Gly Trp Glu Gln Asp Asp Leu Thr Asn
Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Val Leu Ser Ala
Ala Leu His Cys Leu Val Val Gln Gly Lys Lys Gly Glu Asp Ile Leu
                             105
Gly Pro Leu Arg Arg Val Leu Thr His Ile Asp His Ser Leu Ser Arg
                          120
Gln Asn Cys Pro Phe Leu Ala Gly Asp Thr Glu Ser Leu Ala Asp Ile
Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu Gln Asp Pro Ala Tyr Leu
                150
                             155
Pro Glu Glu Leu Gly Ala Leu Gln Ser Trp Phe Gln Thr Leu Ser Thr
Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln Gln Gly
                              185
Val Leu Ala Leu Arg Leu Tyr Leu Gln Lys Gln Pro Gln Pro
Pro Pro Pro Glu Gly Arg
  210
<210> SEQ ID NO 20
<211> LENGTH: 115
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 20
Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu
                                 10
Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr
                              25
Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val
Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala
Ile Cys Arg Tyr Ser Met Ser Gly Leu Met Pro Leu Leu Ala Ile Cys
```

65					70					75					80	
Pro	Ser	Gln	Pro	Thr 85	Thr	Gln	Thr	Ser	Gly 90	Arg	Asp	Gly	Gly	Arg 95	Thr	
Gln	Ser	Lys	Trp 100	Thr	Сув	Ile	Ser	Ser 105	Trp	Pro	Lys	Thr	Met 110	Phe	Leu	
Ser	Ile	Ala 115														
<211 <212	L> LE 2> TY	EQ II ENGTH YPE: RGANI	H: 34	18	o sal	piens	3									
<400)> SI	EQUE	ICE :	21												
atga	agact	gt t	cgt	gagto	ga to	ggcgt	taaag	g ggt	tgct	tgc	cggt	gct	ggc (egee	gccggg	60
agag	gaaag	ggg 9	gcaga	agcag	ga gg	gtgat	tcato	c ago	cacto	gtag	gcc	cggaa	aga '	ttgt	gtggtc	120
ccgt	tcct	ga o	cccg	geeta	aa gg	gtcc	ctgto	tte	gcago	ctgg	atag	gegg	caa ·	ctaco	ctcttc	180
tcca	actaç	gtg (caato	ctgc	g gt	atto	ctate	g tct	ggtt	tga	tgc	cacta	att (ggcta	atctgt	240
ccat	caca	agc o	caact	cacac	ca ga	accaç	gtggg	g aga	agato	ggtg	gaag	gaac	cca (gagca	aagtgg	300
acct	gtat	ca ç	gttca	atggo	cc aa	aaga	caato	g tto	ccttt	cca	tage	cttaç	3			348
<211 <212	L> LE 2> TY	EQ II ENGTH YPE: RGANI	1: 42 PRT	27	o sal	piens	s									
< 400)> SI	EQUE	ICE :	22												
Met 1	Arg	Leu	Phe	Val 5	Ser	Asp	Gly	Val	Pro 10	Gly	CAa	Leu	Pro	Val 15	Leu	
Ala	Ala	Ala	Gly 20	Arg	Ala	Arg	Gly	Arg 25	Ala	Glu	Val	Leu	Ile 30	Ser	Thr	
Val	Gly	Pro 35	Glu	Asp	CAa	Val	Val 40	Pro	Phe	Leu	Thr	Arg 45	Pro	Lys	Val	
Pro	Val 50	Leu	Gln	Leu	Asp	Ser 55	Gly	Asn	Tyr	Leu	Phe 60	Ser	Thr	Ser	Ala	
Ile 65	Cys	Arg	Tyr	Phe	Phe 70	Leu	Leu	Ser	Gly	Trp 75	Glu	Gln	Asp	Asp	Leu 80	
Thr	Asn	Gln	Trp	Leu 85	Glu	Trp	Glu	Ala	Thr 90	Glu	Leu	Gln	Pro	Ala 95	Leu	
Ser	Ala	Ala	Leu 100	Tyr	Tyr	Leu	Val	Val 105	Gln	Gly	Lys	Lys	Gly 110	Glu	Asp	
Val	Leu	Gly 115	Ser	Val	Arg	Arg	Ala 120	Leu	Thr	His	Ile	Asp 125	His	Ser	Leu	
Ser	Arg 130	Gln	Asn	Cys	Pro	Phe 135	Leu	Ala	Gly	Glu	Thr 140	Glu	Ser	Leu	Ala	
Asp 145	Ile	Val	Leu	Trp	Gly 150	Ala	Leu	Tyr	Pro	Leu 155	Leu	Gln	Asp	Pro	Ala 160	
Tyr	Leu	Pro	Glu	Glu 165	Leu	Ser	Ala	Leu	His 170	Ser	Trp	Phe	Gln	Thr 175	Leu	
Ser	Thr	Gln	Glu 180	Pro	Cys	Gln	Arg	Ala 185	Ala	Glu	Thr	Val	Leu 190	Lys	Gln	
Gln	Gly	Val 195	Leu	Ala	Leu	Arg	Pro 200	Tyr	Leu	Gln	ГЛа	Gln 205	Pro	Gln	Pro	
Ser	Pro	Ala	Glu	Gly	Arg	Ala	Val	Thr	Asn	Glu	Pro	Glu	Glu	Glu	Glu	

-continued

											_	con	tın.	ued		
	210					215					220					
Leu 225	Ala	Thr	Leu	Ser	Glu 230	Glu	Glu	Ile	Ala	Met 235	Ala	Val	Thr	Ala	Trp 240	
Glu	Lys	Gly	Leu	Glu 245	Ser	Leu	Pro	Pro	Leu 250	Arg	Pro	Gln	Gln	Asn 255	Pro	
Val	Leu	Pro	Val 260	Ala	Gly	Glu	Arg	Asn 265	Val	Leu	Ile	Thr	Ser 270	Ala	Leu	
Pro	Tyr	Val 275	Asn	Asn	Val	Pro	His 280	Leu	Gly	Asn	Ile	Ile 285	Gly	Сув	Val	
Leu	Ser 290	Ala	Asp	Val	Phe	Ala 295	Arg	Tyr	Ser	Arg	Leu 300	Arg	Gln	Trp	Asn	
Thr 305	Leu	Tyr	Leu	Сув	Gly 310	Thr	Asp	Glu	Tyr	Gly 315	Thr	Ala	Thr	Glu	Thr 320	
Lys	Ala	Leu	Glu	Glu 325	Gly	Leu	Thr	Pro	Gln 330	Glu	Ile	CAa	Asp	Lys 335	Tyr	
His	Ile	Ile	His 340	Ala	Asp	Ile	Tyr	Arg 345	Trp	Phe	Asn	Ile	Ser 350	Phe	Asp	
Ile	Phe	Gly 355	Arg	Thr	Thr	Thr	Pro 360	Gln	Gln	Thr	Lys	Ser 365	Leu	Ser	Val	
Lys	Ser 370	Ala	Asp	His	Ala	Leu 375	Trp	Cys	Ser	Arg	Ala 380	Ser	Thr	Сув	Phe	
Trp 385	Thr	Сла	Leu	Ser	Trp 390	Arg	Ser	Asp	Trp	Arg 395	Ser	Gly	Trp	Gly	Gly 400	
His	Cys	Leu	Ala	Val 405	Thr	Gly	His	Pro	Met 410	Pro	Ser	Leu	Ser	Pro 415	Val	
Leu	Gly	Phe	Gly 420	Met	Ala	Ser	Ser	His 425	Ala	Ala						
<213 <213 <213	L> Ll 2> T 3> Ol	EQ II ENGTI YPE : RGAN: EQUEI	H: 1: DNA ISM:	284 Homo	o saj	pien	S									
atga	agacı	gt t	tegt	gagt	ga tọ	ggcgt	taaa	g ggt	tgct	tgc	cggt	tgct	ggc (egee	gccggg	60
agaç	geee	999 9	gcag	agca	ga g	gtgc	tcat	c ago	cacto	gtag	gcc	cgga.	aga 1	ttgt	gtggtc	120
ccgt	tcc	ga o	cccg	geet	aa g	gtcc	ctgt	c tto	gcago	ctgg	ata	gegg	caa (ctac	ctcttc	180
tcca	acta	gtg (caat	ctgc	cg at	tatti	tttti	t ttq	gttai	ctg	gct	ggga	gca a	agat	gacctc	240

actaaccagt ggctggaatg ggaagcgaca gagctgcagc cagctttgtc tgctgccctg 300 360 tactatttag tggtccaagg caagaagggg gaagatgttc ttggttcagt gcggagagcc ctgactcaca ttgaccacag cttgagtcgt cagaactgtc ctttcctggc tggggagaca 420 gaatctctag ccgacattgt tttgtgggga gccctatacc cattactgca agatcccgcc 480 tacctccctg aggagctgag tgccctgcac agctggttcc agacactgag tacccaggaa 540 ccatgtcagc gagctgcaga gactgtactg aaacagcaag gtgtcctggc tctccggcct 600 tacctccaaa agcagcccca gcccagcccc gctgagggaa gggctgtcac caatgagcct 660 gaggaggagg agctggctac cctatctgag gaggagattg ctatggctgt tactgcttgg 720 780 gagaagggcc tagaaagttt gcccccgctg cggccccagc agaatccagt gttgcctgtg gctggagaaa ggaatgtgct catcaccagt gccctccctt acgtcaacaa tgtcccccac 840 cttgggaaca tcattggttg tgtgctcagt gccgatgtct ttgccaggta ctctcgcctc 900

												COII	CIII	ueu		
cgc	cagto	gga a	acaco	cctct	a to	ctgt	gtggg	g aca	agato	gagt	atg	gtaca	agc a	aacaç	gagacc	960
aagg	gctct	gg a	aggag	gggad	ct aa	accc	cccaç	g gaç	gatct	gcg	acaa	agtad	cca (catca	atccat	1020
gct	gacat	ct a	accgo	ctggt	it ta	aacat	ttcg	g ttt	gata	attt	ttg	gtcg	cac (cacca	actcca	1080
cago	cagac	cca a	aaago	ectca	ag to	gtaaa	agtct	geo	gato	catg	ccct	gtgg	gtg (cagto	egagee	1140
agca	accto	gtt t	ctg	gacct	g co	ctaaq	gctg	g aga	agco	gact	ggag	ggagt	gg 1	ttggg	ggagga	1200
catt	gcct	gg	cagto	gacto	gg ac	cacco	caato	g cco	agtt	tat	caco	ccgtt	ct 1	tggct	teggg	1260
atg	geete	caa q	gccad	eget	gc at	caa										1284
<211 <212	0> SE L> LE 2> TY 3> OF	ENGTI (PE :	H: 86	58	o sal	piens	3									
< 400)> SE	EQUEI	ICE :	24												
Met 1	Arg	Leu	Phe	Val 5	Ser	Aap	Gly	Val	Pro 10	Gly	Cha	Leu	Pro	Val 15	Leu	
Ala	Ala	Ala	Gly 20	Arg	Ala	Arg	Gly	Arg 25	Ala	Glu	Val	Leu	Ile 30	Ser	Thr	
Val	Gly	Pro 35	Glu	Asp	CAa	Val	Val 40	Pro	Phe	Leu	Thr	Arg 45	Pro	ГÀа	Val	
Pro	Val 50	Leu	Gln	Leu	Asp	Ser 55	Gly	Asn	Tyr	Leu	Phe 60	Ser	Thr	Ser	Ala	
Ile 65	Cys	Arg	Tyr	Phe	Phe 70	Leu	Leu	Ser	Gly	Trp 75	Glu	Gln	Asp	Asp	Leu 80	
Thr	Asn	Gln	Trp	Leu 85	Glu	Trp	Glu	Ala	Thr 90	Glu	Leu	Gln	Pro	Ala 95	Leu	
Ser	Ala	Ala	Leu 100	Tyr	Tyr	Leu	Val	Val 105	Gln	Gly	Lys	Lys	Gly 110	Glu	Asp	
Val	Leu	Gly 115	Ser	Val	Arg	Arg	Ala 120	Leu	Thr	His	Ile	Asp 125	His	Ser	Leu	
Ser	Arg 130	Gln	Asn	CAa	Pro	Phe 135	Leu	Ala	Gly	Glu	Thr 140	Glu	Ser	Leu	Ala	
Asp 145	Ile	Val	Leu	Trp	Gly 150	Ala	Leu	Tyr	Pro	Leu 155	Leu	Gln	Asp	Pro	Ala 160	
Tyr	Leu	Pro	Glu	Glu 165	Leu	Ser	Ala	Leu	His 170	Ser	Trp	Phe	Gln	Thr 175	Leu	
Ser	Thr	Gln	Glu 180	Pro	CAa	Gln	Arg	Ala 185	Ala	Glu	Thr	Val	Leu 190	ГÀа	Gln	
Gln	Gly	Val 195	Leu	Ala	Leu	Arg	Pro 200	Tyr	Leu	Gln	ГÀа	Gln 205	Pro	Gln	Pro	
Ser	Pro 210	Ala	Glu	Gly	Arg	Ala 215	Val	Thr	Asn	Glu	Pro 220	Glu	Glu	Glu	Glu	
Leu 225	Ala	Thr	Leu	Ser	Glu 230	Glu	Glu	Ile	Ala	Met 235	Ala	Val	Thr	Ala	Trp 240	
Glu	Lys	Gly	Leu	Glu 245	Ser	Leu	Pro	Pro	Leu 250	Arg	Pro	Gln	Gln	Asn 255	Pro	
Val	Leu	Pro	Val 260	Ala	Gly	Glu	Arg	Asn 265	Val	Leu	Ile	Thr	Ser 270	Ala	Leu	
Pro	Tyr	Val 275	Asn	Asn	Val	Pro	His 280	Leu	Gly	Asn	Ile	Ile 285	Gly	Сув	Val	
Leu	Ser 290	Ala	Asp	Val	Phe	Ala 295	Arg	Tyr	Ser	Arg	Leu 300	Arg	Gln	Trp	Asn	

Thr 305	Leu	Tyr	Leu	Cya	Gly 310	Thr	Asp	Glu	Tyr	Gly 315	Thr	Ala	Thr	Glu	Thr 320
Lys	Ala	Leu	Glu	Glu 325	Gly	Leu	Thr	Pro	Gln 330	Glu	Ile	CAa	Asp	335 Lys	Tyr
His	Ile	Ile	His 340	Ala	Asp	Ile	Tyr	Arg 345	Trp	Phe	Asn	Ile	Ser 350	Phe	Asp
Ile	Phe	Gly 355	Arg	Thr	Thr	Thr	Pro 360	Gln	Gln	Thr	ГÀЗ	Ile 365	Thr	Gln	Asp
Ile	Phe 370	Gln	Gln	Leu	Leu	Lys 375	Arg	Gly	Phe	Val	Leu 380	Gln	Asp	Thr	Val
Glu 385	Gln	Leu	Arg	Сув	Glu 390	His	Сув	Ala	Arg	Phe 395	Leu	Ala	Asp	Arg	Phe 400
Val	Glu	Gly	Val	Cys 405	Pro	Phe	Càa	Gly	Tyr 410	Glu	Glu	Ala	Arg	Gly 415	Asp
Gln	Cys	Asp	Lys 420	Cys	Gly	Lys	Leu	Ile 425	Asn	Ala	Val	Glu	Leu 430	Lys	Lys
Pro	Gln	Cys 435	Lys	Val	Cha	Arg	Ser 440	Cys	Pro	Val	Val	Gln 445	Ser	Ser	Gln
His	Leu 450	Phe	Leu	Asp	Leu	Pro 455	Lys	Leu	Glu	Lys	Arg 460	Leu	Glu	Glu	Trp
Leu 465	Gly	Arg	Thr	Leu	Pro 470	Gly	Ser	Asp	Trp	Thr 475	Pro	Asn	Ala	Gln	Phe 480
Ile	Thr	Arg	Ser	Trp 485	Leu	Arg	Asp	Gly	Leu 490	Lys	Pro	Arg	Сув	Ile 495	Thr
Arg	Asp	Leu	Lys	Trp	Gly	Thr	Pro	Val 505	Pro	Leu	Glu	Gly	Phe 510	Glu	Asp
Lys	Val	Asp 515	Leu	Tyr	Gln	Phe	Met 520	Ala	ГÀв	Asp	Asn	Val 525	Pro	Phe	His
Ser	Leu 530	Val	Phe	Pro	CAa	Ser 535	Ala	Leu	Gly	Ala	Glu 540	Asp	Asn	Tyr	Thr
Leu 545	Val	Ser	His	Leu	Ile 550	Ala	Thr	Glu	Tyr	Leu 555	Asn	Tyr	Glu	Asp	Gly 560
ГÀа	Phe	Ser	Lys	Ser 565	Arg	Gly	Val	Gly	Val 570	Phe	Gly	Asp	Met	Ala 575	Gln
Asp	Thr	Gly	Ile 580	Pro	Ala	Asp	Ile	Trp 585	Arg	Phe	Tyr	Leu	Leu 590	Tyr	Ile
Arg	Pro	Glu 595	Gly	Gln	Asp	Ser	Ala 600		Ser	Trp	Thr	Asp 605		Leu	Leu
ГÀа	Asn 610	Asn	Ser	Glu	Leu	Leu 615	Asn	Asn	Leu	Gly	Asn 620	Phe	Ile	Asn	Arg
Ala 625	Gly	Met	Phe	Val	Ser 630	ГÀа	Phe	Phe	Gly	Gly 635	Tyr	Val	Pro	Glu	Met 640
Val	Leu	Thr	Pro	Asp 645	Asp	Gln	Arg	Leu	Leu 650	Ala	His	Val	Thr	Leu 655	Glu
Leu	Gln	His	Tyr 660	His	Gln	Leu	Leu	Glu 665	Lys	Val	Arg	Ile	Arg 670	Asp	Ala
Leu	Arg	Ser 675	Ile	Leu	Thr	Ile	Ser 680	Arg	His	Gly	Asn	Gln 685	Tyr	Ile	Gln
Val	Asn 690	Glu	Pro	Trp	Lys	Arg 695	Ile	Lys	Gly	Ser	Glu 700	Ala	Asp	Arg	Gln
Arg 705	Ala	Gly	Thr	Val	Thr 710	Gly	Leu	Ala	Val	Asn 715	Ile	Ala	Ala	Leu	Leu 720
Ser	Val	Met	Leu	Gln	Pro	Tyr	Met	Pro	Thr	Val	Ser	Ala	Thr	Ile	Gln

											-	con	tin	ued			
				725					730					735			
Ala	Gln	Leu	Gln 740	Leu	Pro	Pro	Pro	Ala 745	Cys	Ser	Ile	Leu	Leu 750	Thr	Asn		
Phe	Leu	Cys 755	Thr	Leu	Pro	Ala	Gly 760	His	Gln	Ile	Gly	Thr 765	Val	Ser	Pro		
Leu	Phe 770	Gln	ГÀа	Leu	Glu	Asn 775	Asp	Gln	Ile	Glu	Ser 780	Leu	Arg	Gln	Arg		
Phe 785	Gly	Gly	Gly	Gln	Ala 790	Lys	Thr	Ser	Pro	Lys 795	Pro	Ala	Val	Val	Glu 800		
Thr	Val	Thr	Thr	Ala 805	Lys	Pro	Gln	Gln	Ile 810	Gln	Ala	Leu	Met	Asp 815	Glu		
Val	Thr	Lys	Gln 820	Gly	Asn	Ile	Val	Arg 825	Glu	Leu	Lys	Ala	Gln 830	Lys	Ala		
Asp	Lys	Asn 835	Glu	Val	Ala	Ala	Glu 840	Val	Ala	Lys	Leu	Leu 845	Asp	Leu	Lys		
Lys	Gln 850	Leu	Ala	Val	Ala	Glu 855	Gly	Lys	Pro	Pro	Glu 860	Ala	Pro	Lys	Gly		
Lys 865	Lys	Lys	Lys														
<213 <213 <213	0 > SI 1 > LI 2 > T 3 > OI 0 > SI	ENGTI YPE : RGAN	H: 26 DNA ISM:	607 Homo	o saj	pien	3										
atga	agact	gt t	tcgt	gagt	ga t	ggcgt	caaq	g ggt	ttgct	tgc	cggt	tgct	ggc (egee	gccgg	g 60	
aga	gaaaq	ggg 9	gcaga	agca	ga g	gtgc	cato	ago	cacto	gtag	gcc	cggaa	aga 1	ttgt	gtggt	2 120	
ccgt	tcct	ga d	cccg	gccta	aa g	gtcc	ctgto	tte	gcago	tgg	ata	gegg	caa (ctac	ctctt	c 180	
tcca	actaç	gtg (caato	ctgc	eg a	tatt	tttt	tt	gttat	ctg	gct	ggga	gca a	agat	gacct	240	
acta	aacca	agt (ggct	ggaat	g g	gaag	egaca	a gaq	gctgo	cagc	cag	cttt	gtc 1	tgct	gecet	g 300	
tact	catt	ag t	tggto	ccaa	gg c	aaga	agggg	g gaa	agato	gttc	ttg	gttca	agt 🤅	gegga	agagc	360	
ctga	actca	aca t	ttgad	ccaca	ag c	ttga	gtcgt	caç	gaact	gtc	ctti	taat	ggc 1	ggg	gagaca	a 420	
gaat	cctct	ag o	ccga	catt	gt ti	ttgt	3999	gc gc	cctat	acc	cati	tact	gca a	agat	cccgc	c 480	
tac	ctcc	ctg a	aggag	gctga	ag t	gadat	gcad	ago	ctggt	tcc	aga	cact	gag 1	tacc	caggaa	a 540	
ccat	gtca	agc (gagct	tgca	ga g	actg	cacto	g aaa	acago	caag	gtg	teet	ggc 1	tete	eggeet	t 600	
tac	ctcca	aaa a	agcaç	gece	ca g	ccca	geee	gct	tgagg	ggaa	999	ctgt	cac o	caat	gagcct	t 660	
gag	gagga	agg a	agcto	ggcta	ac c	ctat	ctgag	g gag	ggaga	attg	cta	tggc1	tgt 1	tact	gcttg	g 720	
gaga	aagg	gcc t	tagaa	aagti	t g	cccc	eget	g cg	gece	cagc	agaa	atcca	agt 🤅	gttg	cctgt	g 780	
gct	ggaga	aaa q	ggaat	tgtg	ct c	atca	ccagt	gc	cctco	cctt	acg	tcaa	caa 1	tgtc	ccca	e 840	
ctt	gggaa	aca t	tcatt	tggt1	g t	gtgc	cagt	gc	cgato	gtct	ttg	ccag	gta (ctct	egeet	900	
cgc	cagt	gga a	acaco	cctci	ta t	ctgt	gtggg	g aca	agato	gagt	atg	gtaca	agc a	aaca	gagac	960	
aag	gctct	gg a	aggag	ggga	ct a	accc	ccaç	g gaq	gatct	gcg	acaa	agta	cca (catca	atccat	1020	
gct	gacat	cct a	accgo	ctggi	t t	aaca	ttc	g tti	tgata	attt	ttg	gtcg	cac (cacca	actcca	a 1080	
cago	caga	cca a	aaato	cacco	ca g	gacai	tttt	caq	gcagt	tgc	tgaa	aacga	agg 1	tttt	gtgct	g 1140	

caagatactg tggagcaact gcgatgtgag cactgtgctc gcttcctggc tgaccgcttc 1200 gtggagggcg tgtgtccctt ctgtggctat gaggaggctc ggggtgacca gtgtgacaag 1260

-continued

	-concinued	
tgtggcaagc tcatcaatgc tgtc	gagett aagaageete agtgtaaagt etgeegatea	1320
tgccctgtgg tgcagtcgag ccag	cacctg tttctggacc tgcctaagct ggagaagcga	1380
ctggaggagt ggttggggag gaca	ttgcct ggcagtgact ggacacccaa tgcccagttt	1440
atcacccgtt cttggcttcg ggat	ggcctc aagccacgct gcataacccg agacctcaaa	1500
tggggaaccc ctgtaccctt agaa	ggtttt gaagacaagg tggacctgta tcagttcatg	1560
gccaaagaca atgttccttt ccat	agetta gtettteett geteageeet aggagetgag	1620
gataactata ccttggtcag ccac	ctcatt gctacagagt acctgaacta tgaggatggg	1680
aaattotota agagoogogg tgtg	ggagtg tttggggaca tggcccagga cacggggatc	1740
cctgctgaca tctggcgctt ctat	ctgctg tacattcggc ctgagggcca ggacagtgct	1800
tteteetgga eggaeetget getg	aagaat aattetgage tgettaacaa eetgggeaac	1860
ttcatcaaca gagctgggat gttt	gtgtet aagttetttg ggggetatgt geetgagatg	1920
gtgctcaccc ctgatgatca gcgc	ctgctg gcccatgtca ccctggagct ccagcactat	1980
caccagetae ttgagaaggt tegg	atcogg gatgoottgo goagtatoot caccatatot	2040
cgacatggca accaatatat tcag	gtgaat gagccctgga agcggattaa aggcagtgag	2100
gctgacaggc aacgggcagg aaca	gtgact ggcttggcag tgaatatagc tgccttgctc	2160
tctgtcatgc ttcagcctta catg	cccacg gttagtgcca caatccaggc ccagctgcag	2220
ctcccacctc cagcctgcag tatc	ctgctg acaaacttcc tgtgtacctt accagcagga	2280
caccagattg gcacagtcag tccc	ttgttc caaaaattgg aaaatgacca gattgaaagt	2340
ttaaggcagc gctttggagg gggc	caggca aaaacgtccc cgaagccagc agttgtagag	2400
actgttacaa cagccaagcc acag	cagata caagcgctga tggatgaagt gacaaaacaa	2460
ggaaacattg teegagaact gaaa	gcacaa aaggcagaca agaacgaggt tgctgcggag	2520
gtggcgaaac tcttggatct aaag	aaacag ttggctgtag ctgaggggaa accccctgaa	2580
gcccctaaag gcaagaagaa aaag	taa	2607
<210> SEQ ID NO 26 <211> LENGTH: 547 <212> TYPE: PRT <213> ORGANISM: Homo sapie	ns	
<400> SEQUENCE: 26		
Met Arg Leu Phe Val Ser As 1 5	p Gly Val Pro Gly Cys Leu Pro Val Leu 10 15	
Ala Ala Ala Gly Arg Ala Ar 20	g Gly Arg Ala Glu Val Leu Ile Ser Thr 25 30	
Val Gly Pro Glu Asp Cys Va 35	l Val Pro Phe Leu Thr Arg Pro Lys Val 40 45	
Pro Val Leu Gln Leu Asp Se 50 55	r Gly Asn Tyr Leu Phe Ser Thr Ser Ala 60	
Ile Cys Arg Tyr Phe Phe Le	u Leu Ser Gly Trp Glu Gln Asp Asp Leu 75 80	
Thr Asn Gln Trp Leu Glu Tr	p Glu Ala Thr Glu Leu Gln Pro Ala Leu 90 95	
	u Val Val Gln Gly Lys Lys Gly Glu Asp	
100	105 110	

Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu 115 120 125

Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala

	130					135					140				
Asp 145	Ile	Val	Leu	Trp	Gly 150	Ala	Leu	Tyr	Pro	Leu 155	Leu	Gln	Asp	Pro	Ala 160
Tyr	Leu	Pro	Glu	Glu 165	Leu	Ser	Ala	Leu	His 170	Ser	Trp	Phe	Gln	Thr 175	Leu
Ser	Thr	Gln	Glu 180	Pro	Сув	Gln	Arg	Ala 185	Ala	Glu	Thr	Val	Leu 190	Lys	Gln
Gln	Gly	Val 195	Leu	Ala	Leu	Arg	Pro 200	Tyr	Leu	Gln	Lys	Gln 205	Pro	Gln	Pro
Ser	Pro 210	Ala	Glu	Gly	Arg	Ala 215	Val	Thr	Asn	Glu	Pro 220	Glu	Glu	Glu	Glu
Leu 225	Ala	Thr	Leu	Ser	Glu 230	Glu	Glu	Ile	Ala	Met 235	Ala	Val	Thr	Ala	Trp 240
Glu	ГÀа	Gly	Leu	Glu 245	Ser	Leu	Pro	Pro	Leu 250	Arg	Pro	Gln	Gln	Asn 255	Pro
Val	Leu	Pro	Val 260	Ala	Gly	Glu	Arg	Asn 265	Val	Leu	Ile	Thr	Ser 270	Ala	Leu
Pro	Tyr	Val 275	Asn	Asn	Val	Pro	His 280	Leu	Gly	Asn	Ile	Ile 285	Gly	CÀa	Val
Leu	Ser 290	Ala	Asp	Val	Phe	Ala 295	Arg	Tyr	Ser	Arg	Leu 300	Arg	Gln	Trp	Asn
Thr 305	Leu	Tyr	Leu	CÀa	Gly 310	Thr	Asp	Glu	Tyr	Gly 315	Thr	Ala	Thr	Glu	Thr 320
ГЛа	Ala	Leu	Glu	Glu 325	Gly	Leu	Thr	Pro	Gln 330	Glu	Ile	Cha	Asp	Lys 335	Tyr
His	Ile	Ile	His 340	Ala	Asp	Ile	Tyr	Arg 345	Trp	Phe	Asn	Ile	Ser 350	Phe	Asp
Ile	Phe	Gly 355	Arg	Thr	Thr	Thr	Pro 360	Gln	Gln	Thr	Lys	Ile 365	Thr	Gln	Asp
Ile	Phe 370	Gln	Gln	Leu	Leu	Lys 375	Arg	Gly	Phe	Val	Leu 380	Gln	Asp	Thr	Val
Glu 385	Gln	Leu	Arg	Cys	Glu 390	His	Càa	Ala	Arg	Phe 395	Leu	Ala	Asp	Arg	Phe 400
Val	Glu	Gly	Val	Сув 405	Pro	Phe	Сув	Gly	Tyr 410	Glu	Glu	Ala	Arg	Gly 415	Asp
Gln	Cys	Asp	Lys 420	Cys	Gly	Lys	Leu	Ile 425	Asn	Ala	Val	Glu	Leu 430	Lys	Lys
Pro	Gln	Сув 435	Lys	Val	Cys	Arg	Ser 440	CÀa	Pro	Val	Val	Gln 445	Ser	Ser	Gln
His	Leu 450	Phe	Leu	Asp	Leu	Pro 455	Lys	Leu	Glu	Lys	Arg 460	Leu	Glu	Glu	Trp
Leu 465	Gly	Arg	Thr	Leu	Pro 470	Gly	Ser	Asp	Trp	Thr 475	Pro	Asn	Ala	Gln	Phe 480
Ile	Thr	Arg	Ser	Trp 485	Leu	Arg	Asp	Gly	Leu 490	Lys	Pro	Arg	Сув	Ile 495	Thr
Arg	Asp	Leu	Lys 500	Trp	Gly	Thr	Pro	Val 505	Pro	Leu	Glu	Gly	Phe 510	Glu	Asp
Lys	Val	Phe 515	Tyr	Val	Trp	Phe	Asp 520	Ala	Thr	Ile	Gly	Tyr 525	Leu	Ser	Ile
Thr	Ala 530	Asn	Tyr	Thr	Asp	Gln 535	Trp	Glu	Arg	Trp	Trp 540	Lys	Asn	Pro	Glu
Gln	Ser	Thr													

Gln Ser Th

-continued

```
<211> LENGTH: 1644
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 27
atgagactgt tcgtgagtga tggcgtcccg ggttgcttgc cggtgctggc cgccgccggg
                                                                      60
agagcccggg gcagagcaga ggtgctcatc agcactgtag gcccggaaga ttgtgtggtc
                                                                     120
ccgttcctga cccggcctaa ggtccctgtc ttgcagctgg atagcggcaa ctacctcttc
tccactagtg caatctgccg atattttttt ttgttatctg gctgggagca agatgacctc
actaaccagt ggctggaatg ggaagcgaca gagctgcagc cagctttgtc tgctgccctg
                                                                     360
tactatttaq tqqtccaaqq caaqaaqqqq qaaqatqttc ttqqttcaqt qcqqaqaqcc
ctgactcaca ttgaccacag cttgagtcgt cagaactgtc ctttcctggc tggggagaca
                                                                     420
gaatctctag ccgacattgt tttgtgggga gccctatacc cattactgca agatcccgcc
                                                                     480
tacctccctg aggagctgag tgccctgcac agctggttcc agacactgag tacccaggaa
                                                                     540
ccatqtcaqc qaqctqcaqa qactqtactq aaacaqcaaq qtqtcctqqc tctccqqcct
                                                                     600
tacctccaaa aqcaqcccca qcccaqcccc qctqaqqqaa qqqctqtcac caatqaqcct
                                                                     660
gaggaggagg agctggctac cctatctgag gaggagattg ctatggctgt tactgcttgg
                                                                     720
gagaagggcc tagaaagttt gcccccgctg cggccccagc agaatccagt gttgcctgtg
                                                                     780
gctggagaaa ggaatgtgct catcaccagt gccctccctt acgtcaacaa tgtcccccac
                                                                     840
cttgggaaca tcattggttg tgtgctcagt gccgatgtct ttgccaggta ctctcgcctc
                                                                     900
cgccagtgga acaccctcta tctgtgtggg acagatgagt atggtacagc aacagagacc
                                                                     960
aaggetetgg aggagggaet aacceeccag gagatetgeg acaagtacca cateatecat
                                                                    1020
getgacatet accgetggtt taacattteg tttgatattt ttggtegeac caccaeteca
                                                                    1080
cagcagacca aaatcaccca ggacattttc cagcagttgc tgaaacgagg ttttgtgctg
                                                                    1140
caagatactg tggagcaact gcgatgtgag cactgtgctc gcttcctggc tgaccgcttc
                                                                    1200
gtggagggcg tgtgtccctt ctgtggctat gaggaggctc ggggtgacca gtgtgacaag
                                                                    1260
tgtggcaagc tcatcaatgc tgtcgagctt aagaagcctc agtgtaaagt ctgccgatca
                                                                    1320
tgccctgtgg tgcagtcgag ccagcacctg tttctggacc tgcctaagct ggagaagcga
                                                                    1380
ctggaggagt ggttggggag gacattgcct ggcagtgact ggacacccaa tgcccagttt
atcacccgtt cttggcttcg ggatggcctc aagccacgct gcataacccg agacctcaaa
                                                                    1500
tggggaaccc ctgtaccctt agaaggtttt gaagacaagg tattctatgt ctggtttgat
                                                                    1560
gccactattg gctatctgtc catcacagcc aactacacag accagtggga gagatggtgg
                                                                    1620
aagaacccag agcaaagtac ctga
                                                                    1644
```

<210> SEQ ID NO 28

<210> SEQ ID NO 27

<400> SEQUENCE: 28

Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu

Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr \$20\$

<211> LENGTH: 750

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

Val	Gly	Pro 35	Glu	Asp	CAa	Val	Val 40	Pro	Phe	Leu	Thr	Arg 45	Pro	Lys	Val
Pro	Val 50	Leu	Gln	Leu	Asp	Ser 55	Gly	Asn	Tyr	Leu	Phe 60	Ser	Thr	Ser	Ala
Ile 65	Сув	Arg	Tyr	Phe	Phe 70	Leu	Leu	Ser	Gly	Trp 75	Glu	Gln	Asp	Asp	Leu 80
Thr	Asn	Gln	Trp	Leu 85	Glu	Trp	Glu	Ala	Thr 90	Glu	Leu	Gln	Pro	Ala 95	Leu
Ser	Ala	Ala	Leu 100	Tyr	Tyr	Leu	Val	Val 105	Gln	Gly	Lys	Lys	Gly 110	Glu	Asp
Val	Leu	Gly 115	Ser	Val	Arg	Arg	Ala 120	Leu	Thr	His	Ile	Asp 125	His	Ser	Leu
Ser	Arg 130	Gln	Asn	Cys	Pro	Phe 135	Leu	Ala	Gly	Glu	Thr 140	Glu	Ser	Leu	Ala
Asp 145	Ile	Val	Leu	Trp	Gly 150	Ala	Leu	Tyr	Pro	Leu 155	Leu	Gln	Asp	Pro	Ala 160
Tyr	Leu	Pro	Glu	Glu 165	Leu	Ser	Ala	Leu	His 170	Ser	Trp	Phe	Gln	Thr 175	Leu
Ser	Thr	Gln	Glu 180	Pro	CÀa	Gln	Arg	Ala 185	Ala	Glu	Thr	Val	Leu 190	ГЛа	Gln
Gln	Gly	Val 195	Leu	Ala	Leu	Arg	Pro 200	Tyr	Leu	Gln	ГЛа	Gln 205	Pro	Gln	Pro
Ser	Pro 210	Ala	Glu	Gly	Arg	Ala 215	Val	Thr	Asn	Glu	Pro 220	Glu	Glu	Glu	Glu
Leu 225	Ala	Thr	Leu	Ser	Glu 230	Glu	Glu	Ile	Ala	Met 235	Ala	Val	Thr	Ala	Trp 240
Glu	Lys	Gly	Leu	Glu 245	Ser	Leu	Pro	Pro	Leu 250	Arg	Pro	Gln	Gln	Asn 255	Pro
Val	Leu	Pro	Val 260	Ala	Gly	Glu	Arg	Asn 265	Val	Leu	Ile	Thr	Ser 270	Ala	Leu
Pro	Tyr	Val 275	Asn	Asn	Val	Pro	His 280	Leu	Gly	Asn	Ile	Ile 285	Gly	Cys	Val
Leu	Ser 290	Ala	Asp	Val	Phe	Ala 295	Arg	Tyr	Ser	Arg	Leu 300	Arg	Gln	Trp	Asn
Thr 305	Leu	Tyr	Leu	CAa	Gly 310	Thr	Asp	Glu	Tyr	Gly 315	Thr	Ala	Thr	Glu	Thr 320
Lys	Ala	Leu	Glu	Glu 325	Gly	Leu	Thr	Pro	Gln 330	Glu	Ile	CÀa	Asp	Lys 335	Tyr
His	Ile	Ile	His 340	Ala	Asp	Ile	Tyr	Arg 345	Trp	Phe	Asn	Ile	Ser 350	Phe	Asp
Ile	Phe	Gly 355	Arg	Thr	Thr	Thr	Pro 360	Gln	Gln	Thr	Lys	Ile 365	Thr	Gln	Asp
Ile	Phe 370	Gln	Gln	Leu	Leu	Lys 375	Arg	Gly	Phe	Val	Leu 380	Gln	Asp	Thr	Val
Glu 385	Gln	Leu	Arg	Cys	Glu 390	His	Сув	Ala	Arg	Phe 395	Leu	Ala	Asp	Arg	Phe 400
Val	Glu	Gly	Val	Сув 405	Pro	Phe	Cys	Gly	Tyr 410	Glu	Glu	Ala	Arg	Gly 415	Asp
Gln	Cys	Asp	Lys 420	Cya	Gly	Lys	Leu	Ile 425	Asn	Ala	Val	Glu	Leu 430	Lys	Lys
Pro	Gln	Cys 435	Lys	Val	Cys	Arg	Ser 440	Cys	Pro	Val	Val	Gln 445	Ser	Ser	Gln
His	Leu	Phe	Leu	Asp	Leu	Pro	Lys	Leu	Glu	Lys	Arg	Leu	Glu	Glu	Trp

		-continued	
450	455	460	
Leu Gly Arg Thr Leu Pro (Gly Ser Asp Trp Thr 475	Pro Asn Ala Gln	Phe 480
Ile Thr Arg Ser Trp Leu 2 485	Arg Asp Gly Leu Lys 490	Pro Arg Cys Ile 495	Thr
Arg Asp Leu Lys Trp Gly 500	Thr Pro Val Pro Leu 505	Glu Gly Phe Glu 510	Asp
Lys Val Phe Tyr Val Trp I 515	Phe Asp Ala Thr Ile 520	Gly Tyr Leu Ser 525	Ile
Thr Ala Asn Tyr Thr Asp (Gln Trp Glu Arg Trp 535	Trp Lys Asn Pro 540	Glu
Gln Val Asp Leu Tyr Gln 1 545 550	Phe Met Ala Lys Asp 555	Asn Val Pro Phe	His 560
Ser Leu Val Phe Pro Cys 5	Ser Ala Leu Gly Ala 570	Glu Asp Asn Tyr 575	Thr
Leu Val Ser His Leu Ile 2 580	Ala Thr Glu Tyr Leu 585	Asn Tyr Glu Asp 590	Gly
Lys Phe Ser Lys Ser Arg (595	Gly Val Gly Val Phe 600	Gly Asp Met Ala 605	Gln
Asp Thr Gly Ile Pro Ala A	Asp Ile Trp Arg Phe 615	Tyr Leu Leu Tyr 620	Ile
Arg Pro Glu Gly Gln Asp 8 625 630	Ser Ala Phe Ser Trp 635	Thr Asp Leu Leu	Leu 640
Lys Asn Asn Ser Glu Leu 1 645	Leu Asn Asn Leu Gly 650	Asn Phe Ile Asn 655	Arg
Ala Gly Met Phe Val Ser 1 660	Lys Phe Phe Gly Gly 665	Tyr Val Pro Glu 670	Met
Val Leu Thr Pro Asp Asp (675	Gln Arg Leu Leu Ala 680	His Val Thr Leu 685	Glu
Leu Gln His Tyr His Gln 1	Leu Leu Glu Lys Val 695	Arg Ile Arg Asp 700	Ala
Leu Arg Ser Ile Leu Thr : 705 710	Ile Ser Arg His Gly 715	Asn Gln Tyr Ile	Gln 720
Val Asn Glu Pro Trp Lys 2 725	Arg Ile Lys Gly Ser 730	Glu Ala Asp Arg 735	Ser
Val Pro Cys Ser Lys Asn 740	Trp Lys Met Thr Arg 745	Leu Lys Val 750	
<210> SEQ ID NO 29			
<211> LENGTH: 2253			
<212> TYPE: DNA <213> ORGANISM: Homo sap:	iens		
<400> SEQUENCE: 29			
atgagactgt tegtgagtga tgg	gegteeeg ggttgettge	cggtgctggc cgcc	geeggg 60
agagcccggg gcagagcaga ggt	tgctcatc agcactgtag	gcccggaaga ttgt	gtggtc 120
ccgttcctga cccggcctaa gg	tecetgte ttgcagetgg	atageggeaa etae	etette 180
tecaetagtg caatetgeeg ata	atttttt ttgttatctg	gctgggagca agatç	gacete 240
actaaccagt ggctggaatg gg	aagcgaca gagctgcagc	cagctttgtc tgctq	geeetg 300
tactatttag tggtccaagg caa	agaagggg gaagatgttc	ttggttcagt gcgga	agagcc 360

ctgactcaca ttgaccacag cttgagtcgt cagaactgtc ctttcctggc tggggagaca

gaatetetag cegacattgt tttgtgggga geeetatace cattactgea agateeegee

420

480

tacctccctg	aggagctgag	tgccctgcac	agctggttcc	agacactgag	tacccaggaa	540
ccatgtcagc	gagctgcaga	gactgtactg	aaacagcaag	gtgtcctggc	teteeggeet	600
tacctccaaa	agcagcccca	gcccagcccc	gctgagggaa	gggctgtcac	caatgagcct	660
gaggaggagg	agctggctac	cctatctgag	gaggagattg	ctatggctgt	tactgcttgg	720
gagaagggcc	tagaaagttt	gcccccgctg	cggccccagc	agaatccagt	gttgcctgtg	780
gctggagaaa	ggaatgtgct	catcaccagt	gccctccctt	acgtcaacaa	tgtcccccac	840
cttgggaaca	tcattggttg	tgtgctcagt	gccgatgtct	ttgccaggta	ctctcgcctc	900
cgccagtgga	acaccctcta	tctgtgtggg	acagatgagt	atggtacagc	aacagagacc	960
aaggctctgg	aggagggact	aaccccccag	gagatetgeg	acaagtacca	catcatccat	1020
gctgacatct	accgctggtt	taacatttcg	tttgatattt	ttggtcgcac	caccactcca	1080
cagcagacca	aaatcaccca	ggacattttc	cagcagttgc	tgaaacgagg	ttttgtgctg	1140
caagatactg	tggagcaact	gcgatgtgag	cactgtgctc	gcttcctggc	tgaccgcttc	1200
gtggagggcg	tgtgtccctt	ctgtggctat	gaggaggctc	ggggtgacca	gtgtgacaag	1260
tgtggcaagc	tcatcaatgc	tgtcgagctt	aagaagcctc	agtgtaaagt	ctgccgatca	1320
tgccctgtgg	tgcagtcgag	ccagcacctg	tttctggacc	tgcctaagct	ggagaagcga	1380
ctggaggagt	ggttggggag	gacattgcct	ggcagtgact	ggacacccaa	tgcccagttt	1440
atcacccgtt	cttggcttcg	ggatggcctc	aagccacgct	gcataacccg	agacctcaaa	1500
tggggaaccc	ctgtaccctt	agaaggtttt	gaagacaagg	tattctatgt	ctggtttgat	1560
gccactattg	gctatctgtc	catcacagcc	aactacacag	accagtggga	gagatggtgg	1620
aagaacccag	agcaagtgga	cctgtatcag	ttcatggcca	aagacaatgt	tcctttccat	1680
agcttagtct	tteettgete	agecetagga	gctgaggata	actatacctt	ggtcagccac	1740
ctcattgcta	cagagtacct	gaactatgag	gatgggaaat	tctctaagag	ccgcggtgtg	1800
ggagtgtttg	gggacatggc	ccaggacacg	gggatccctg	ctgacatctg	gcgcttctat	1860
ctgctgtaca	tteggeetga	gggccaggac	agtgetttet	cctggacgga	cctgctgctg	1920
aagaataatt	ctgagctgct	taacaacctg	ggcaacttca	tcaacagagc	tgggatgttt	1980
gtgtctaagt	tetttggggg	ctatgtgcct	gagatggtgc	tcacccctga	tgatcagcgc	2040
ctgctggccc	atgtcaccct	ggagetecag	cactatcacc	agctacttga	gaaggttcgg	2100
atccgggatg	ccttgcgcag	tatcctcacc	atatetegae	atggcaacca	atatattcag	2160
gtgaatgagc	cctggaagcg	gattaaaggc	agtgaggctg	acaggtcagt	cccttgttcc	2220
aaaaattgga	aaatgaccag	attgaaagtt	taa			2253
<210> SEQ 3	ID NO 30					

<210> SEQ ID NO 30

<211> LENGTH: 869 <212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 30

Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu 1 5 10 10 15

Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val $_{\rm 35}$ $_{\rm 40}$ $_{\rm 45}$ 40

Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala

-	continued
-	continued

	50					55					60				
Ile 65		Arg	Tyr	Phe	Phe 70		Leu	Ser	Gly	Trp 75		Gln	Asp	Asp	Leu 80
Thr	Asn	Gln	Trp	Leu 85	Glu	Trp	Glu	Ala	Thr 90	Glu	Leu	Gln	Pro	Ala 95	Leu
Ser	Ala	Ala	Leu 100	Tyr	Tyr	Leu	Val	Val 105	Gln	Gly	ГÀз	ГÀз	Gly 110	Glu	Asp
Val	Leu	Gly 115	Ser	Val	Arg	Arg	Ala 120	Leu	Thr	His	Ile	Asp 125	His	Ser	Leu
Ser	Arg 130	Gln	Asn	CÀa	Pro	Phe 135	Leu	Ala	Gly	Glu	Thr 140	Glu	Ser	Leu	Ala
Asp 145	Ile	Val	Leu	Trp	Gly 150	Ala	Leu	Tyr	Pro	Leu 155	Leu	Gln	Asp	Pro	Ala 160
Tyr	Leu	Pro	Glu	Glu 165	Leu	Ser	Ala	Leu	His 170	Ser	Trp	Phe	Gln	Thr 175	Leu
Ser	Thr	Gln	Glu 180	Pro	CÀa	Gln	Arg	Ala 185	Ala	Glu	Thr	Val	Leu 190	Lys	Gln
Gln	Gly	Val 195	Leu	Ala	Leu	Arg	Pro 200	Tyr	Leu	Gln	ГÀа	Gln 205	Pro	Gln	Pro
Ser	Pro 210	Ala	Glu	Gly	Arg	Ala 215	Val	Thr	Asn	Glu	Pro 220	Glu	Glu	Glu	Glu
Leu 225	Ala	Thr	Leu	Ser	Glu 230	Glu	Glu	Ile	Ala	Met 235	Ala	Val	Thr	Ala	Trp 240
Glu	Lys	Gly	Leu	Glu 245	Ser	Leu	Pro	Pro	Leu 250	Arg	Pro	Gln	Gln	Asn 255	Pro
Val	Leu	Pro	Val 260	Ala	Gly	Glu	Arg	Asn 265	Val	Leu	Ile	Thr	Ser 270	Ala	Leu
Pro	Tyr	Val 275	Asn	Asn	Val	Pro	His 280	Leu	Gly	Asn	Ile	Ile 285	Gly	CÀa	Val
Leu	Ser 290	Ala	Asp	Val	Phe	Ala 295	Arg	Tyr	Ser	Arg	Leu 300	Arg	Gln	Trp	Asn
Thr 305	Leu	Tyr	Leu	Cys	Gly 310	Thr	Asp	Glu	Tyr	Gly 315	Thr	Ala	Thr	Glu	Thr 320
ГÀз	Ala	Leu	Glu	Glu 325	Gly	Leu	Thr	Pro	Gln 330	Glu	Ile	CAa	Asp	335	Tyr
His	Ile	Ile	His 340	Ala	Asp	Ile	Tyr	Arg 345	Trp	Phe	Asn	Ile	Ser 350	Phe	Asp
Ile	Phe	Gly 355	Arg	Thr	Thr	Thr	Pro 360	Gln	Gln	Thr	ГÀа	Ile 365	Thr	Gln	Asp
Ile	Phe 370	Gln	Gln	Leu	Leu	Lys 375	Arg	Gly	Phe	Val	Leu 380	Gln	Asp	Thr	Val
Glu 385	Gln	Leu	Arg	CÀa	Glu 390	His	CÀa	Ala	Arg	Phe 395	Leu	Ala	Asp	Arg	Phe 400
Val	Glu	Gly	Val	Сув 405	Pro	Phe	Cys	Gly	Tyr 410	Glu	Glu	Ala	Arg	Gly 415	Asp
Gln	Cys	Asp	Lys 420	Cys	Gly	Lys	Leu	Ile 425	Asn	Ala	Val	Glu	Leu 430	Lys	ГЛа
Pro	Gln	Сув 435	Lys	Val	CÀa	Arg	Ser 440	CÀa	Pro	Val	Val	Gln 445	Ser	Ser	Gln
His	Leu 450	Phe	Leu	Asp	Leu	Pro 455	Lys	Leu	Glu	Lys	Arg 460	Leu	Glu	Glu	Trp
Leu 465	Gly	Arg	Thr	Leu	Pro 470	Gly	Ser	Asp	Trp	Thr 475	Pro	Asn	Ala	Gln	Phe 480

Ile	Thr	Arg	Ser	Trp 485	Leu	Arg	Asp	Gly	Leu 490	Lys	Pro	Arg	Cys	Ile 495	Thr
Arg	Asp	Leu			Gly	Thr	Pro			Leu	Glu	Gly			Asp
Lys	Val		500 Tyr	Val	Trp	Phe		505 Ala	Thr	Ile	Gly		510 Leu	Ser	Ile
Thr	Ala	515 Asn	Tyr	Thr	Asp		520 Trp	Glu	Arg	Trp		525 Lys	Asn	Pro	Glu
	530 Val	Asp	Leu	Tyr		535 Phe	Met	Ala	Lys	_	540 Asn	Val	Pro	Phe	
545 Ser	Leu	Val	Phe		550 Cys	Ser	Ala	Leu	_	555 Ala	Glu	Asp	Asn		560 Thr
_				565					570			_		575	<i>a</i>
ьeu	Val	ser	580	ьeu	lle	АІА	Tnr	585	ıyr	ьeu	Asn	Tyr	590	Asp	GIŸ
Lys	Phe	Ser 595	Lys	Ser	Arg	Gly	Val 600	Gly	Val	Phe	Gly	Asp 605	Met	Ala	Gln
Asp	Thr 610	Gly	Ile	Pro	Ala	Asp 615	Ile	Trp	Arg	Phe	Tyr 620	Leu	Leu	Tyr	Ile
Arg 625	Pro	Glu	Gly	Gln	Asp	Ser	Ala	Phe	Ser	Trp 635	Thr	Asp	Leu	Leu	Leu 640
Lys	Asn	Asn	Ser	Glu 645	Leu	Leu	Asn	Asn	Leu 650	Gly	Asn	Phe	Ile	Asn 655	Arg
Ala	Gly	Met	Phe 660	Val	Ser	Lys	Phe	Phe 665	Gly	Gly	Tyr	Val	Pro 670	Glu	Met
Val	Leu	Thr 675	Pro	Asp	Asp	Gln	Arg 680	Leu	Leu	Ala	His	Val 685	Thr	Leu	Glu
Leu	Gln 690	His	Tyr	His	Gln	Leu 695	Leu	Glu	Lys	Val	Arg 700	Ile	Arg	Asp	Ala
Leu 705	Arg	Ser	Ile	Leu	Thr 710	Ile	Ser	Arg	His	Gly 715	Asn	Gln	Tyr	Ile	Gln 720
Val	Asn	Glu	Pro	Trp 725	ràa	Arg	Ile	Lys	Gly 730	Ser	Glu	Ala	Asp	Arg 735	Gln
Arg	Ala	Gly	Thr 740	Val	Thr	Gly	Leu	Ala 745	Val	Asn	Ile	Ala	Ala 750	Leu	Leu
Ser	Val	Met 755	Leu	Gln	Pro	Tyr	Met 760	Pro	Thr	Val	Ser	Ala 765	Thr	Ile	Gln
Ala	Gln 770	Leu	Gln	Leu	Pro	Pro 775	Pro	Ala	CAa	Ser	Ile 780	Leu	Leu	Thr	Asn
Phe 785	Leu	CÀa	Thr	Leu	Pro 790	Ala	Gly	His	Gln	Ile 795	Gly	Thr	Val	Ser	Pro 800
Leu	Phe	Gln	Lys	Leu 805	Glu	Asn	Asp	Gln	Ile 810	Glu	Ser	Leu	Arg	Gln 815	Arg
Phe	Gly	Gly	Gly 820	Gln	Gly	Asn	Ile	Val 825	Arg	Glu	Leu	ГÀа	Ala 830	Gln	Lys
Ala	Asp	Lys 835	Asn	Glu	Val	Ala	Ala 840	Glu	Val	Ala	Lys	Leu 845	Leu	Asp	Leu
Lys	Lys 850	Gln	Leu	Ala	Val	Ala 855	Glu	Gly	Lys	Pro	Pro 860	Glu	Ala	Pro	Lys
Gly 865	Lys	Lys	Lys	Lys											

<210> SEQ ID NO 31 <211> LENGTH: 2610

<212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 31

<400> SEQUI	ENCE: 31					
atgagactgt	tcgtgagtga	tggcgtcccg	ggttgcttgc	cggtgctggc	cgccgccggg	60
agagcccggg	gcagagcaga	ggtgctcatc	agcactgtag	gcccggaaga	ttgtgtggtc	120
ccgttcctga	cccggcctaa	ggtccctgtc	ttgcagctgg	atageggeaa	ctacctcttc	180
tccactagtg	caatctgccg	atatttttt	ttgttatctg	gctgggagca	agatgacctc	240
actaaccagt	ggctggaatg	ggaagcgaca	gagetgeage	cagetttgte	tgctgccctg	300
tactatttag	tggtccaagg	caagaagggg	gaagatgttc	ttggttcagt	geggagagee	360
ctgactcaca	ttgaccacag	cttgagtcgt	cagaactgtc	ctttcctggc	tggggagaca	420
gaatctctag	ccgacattgt	tttgtgggga	gccctatacc	cattactgca	agatecegee	480
tacctccctg	aggagctgag	tgccctgcac	agctggttcc	agacactgag	tacccaggaa	540
ccatgtcagc	gagctgcaga	gactgtactg	aaacagcaag	gtgtcctggc	tctccggcct	600
tacctccaaa	agcagcccca	gcccagcccc	gctgagggaa	gggctgtcac	caatgagcct	660
gaggaggagg	agctggctac	cctatctgag	gaggagattg	ctatggctgt	tactgcttgg	720
gagaagggcc	tagaaagttt	gcccccgctg	cggccccagc	agaatccagt	gttgcctgtg	780
gctggagaaa	ggaatgtgct	catcaccagt	gccctccctt	acgtcaacaa	tgtcccccac	840
cttgggaaca	tcattggttg	tgtgctcagt	gccgatgtct	ttgccaggta	ctctcgcctc	900
cgccagtgga	acaccctcta	tctgtgtggg	acagatgagt	atggtacagc	aacagagacc	960
aaggctctgg	aggagggact	aaccccccag	gagatctgcg	acaagtacca	catcatccat	1020
gctgacatct	accgctggtt	taacatttcg	tttgatattt	ttggtcgcac	caccactcca	1080
cagcagacca	aaatcaccca	ggacattttc	cagcagttgc	tgaaacgagg	ttttgtgctg	1140
caagatactg	tggagcaact	gcgatgtgag	cactgtgctc	gcttcctggc	tgaccgcttc	1200
gtggagggcg	tgtgtccctt	ctgtggctat	gaggaggctc	ggggtgacca	gtgtgacaag	1260
tgtggcaagc	tcatcaatgc	tgtcgagctt	aagaagcctc	agtgtaaagt	ctgccgatca	1320
tgccctgtgg	tgcagtcgag	ccagcacctg	tttctggacc	tgcctaagct	ggagaagcga	1380
ctggaggagt	ggttggggag	gacattgcct	ggcagtgact	ggacacccaa	tgcccagttt	1440
atcacccgtt	cttggcttcg	ggatggcctc	aagccacgct	gcataacccg	agacctcaaa	1500
tggggaaccc	ctgtaccctt	agaaggtttt	gaagacaagg	tattctatgt	ctggtttgat	1560
gccactattg	gctatctgtc	catcacagcc	aactacacag	accagtggga	gagatggtgg	1620
aagaacccag	agcaagtgga	cctgtatcag	ttcatggcca	aagacaatgt	tcctttccat	1680
agcttagtct	ttccttgctc	agccctagga	gctgaggata	actatacctt	ggtcagccac	1740
ctcattgcta	cagagtacct	gaactatgag	gatgggaaat	tctctaagag	ccgcggtgtg	1800
ggagtgtttg	gggacatggc	ccaggacacg	gggatccctg	ctgacatctg	gcgcttctat	1860
ctgctgtaca	ttcggcctga	gggccaggac	agtgctttct	cctggacgga	cctgctgctg	1920
aagaataatt	ctgagctgct	taacaacctg	ggcaacttca	tcaacagagc	tgggatgttt	1980
gtgtctaagt	tctttggggg	ctatgtgcct	gagatggtgc	tcacccctga	tgatcagcgc	2040
ctgctggccc	atgtcaccct	ggagctccag	cactatcacc	agctacttga	gaaggttcgg	2100
atccgggatg	ccttgcgcag	tatcctcacc	atatctcgac	atggcaacca	atatattcag	2160
gtgaatgagc	cctggaagcg	gattaaaggc	agtgaggctg	acaggcaacg	ggcaggaaca	2220

-continued	
gtgactggct tggcagtgaa tatagctgcc ttgctctctg tcatgcttca gccttacatg	2280
cccacggtta gtgccacaat ccaggcccag ctgcagctcc cacctccagc ctgcagtatc	2340
ctgctgacaa acttcctgtg taccttacca gcaggacacc agattggcac agtcagtccc	2400
ttgttccaaa aattggaaaa tgaccagatt gaaagtttaa ggcagcgctt tggaggggc	2460
cagggaaaca ttgtccgaga actgaaagca caaaaggcag acaagaacga ggttgctgcg	2520
gaggtggcga aactottgga totaaagaaa cagttggotg tagotgaggg gaaaccooot	2580
gaagccccta aaggcaagaa gaaaaagtaa	2610
<210> SEQ ID NO 32 <211> LENGTH: 114 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 32	
Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu 1 5 10 15	
Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr 20 25 30	
Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val 35 40 45	
Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala 50 55 60	
Ile Cys Arg Gly Ala Glu Cys Pro Ala Gln Leu Val Pro Asp Thr Glu 65 70 75 80	
Tyr Pro Gly Thr Met Ser Ala Ser Cys Arg Asp Cys Thr Glu Thr Ala 85 90 95	
Arg Cys Pro Gly Ser Pro Ala Leu Pro Pro Lys Ala Ala Pro Ala Gln 100 105 110	
Pro Arg	
<210> SEQ ID NO 33 <211> LENGTH: 345 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 33	
atgagactgt tcgtgagtga tggcgtcccg ggttgcttgc cggtgctggc cgccgccggg	60
agagcccggg gcagagcaga ggtgctcatc agcactgtag gcccggaaga ttgtgtggtc	120
ccgttcctga cccggcctaa ggtccctgtc ttgcagctgg atagcggcaa ctacctcttc	180
tccactagtg caatctgccg aggagetgag tgccctgcac agctggttcc agacactgag	240
tacccaggaa ccatgtcagc gagctgcaga gactgtactg aaacagcaag gtgtcctggc	300
teteeggeet taeeteeaaa ageageeeea geecageeee getga	345
<210> SEQ ID NO 34 <211> LENGTH: 276 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 34	
Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu 1 5 10 15	
Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr 20 25 30	

Val	Gly	Pro 35	Glu	Asp	Cys	Val	Val 40	Pro	Phe	Leu	Thr	Arg 45	Pro	Lys	Val	
Pro	Val 50	Leu	Gln	Leu	Asp	Ser 55	Gly	Asn	Tyr	Leu	Phe 60	Ser	Thr	Ser	Ala	
Ile 65	Cys	Arg	Tyr	Phe	Phe 70	Leu	Leu	Ser	Gly	Trp 75	Glu	Gln	Asp	Asp	Leu 80	
Thr	Asn	Gln	Trp	Leu 85	Glu	Trp	Glu	Ala	Thr 90	Glu	Leu	Gln	Pro	Ala 95	Leu	
Ser	Ala	Ala	Leu 100	Tyr	Tyr	Leu	Val	Val 105	Gln	Gly	ГÀз	ГЛа	Gly 110	Glu	Asp	
Val	Leu	Gly 115	Ser	Val	Arg	Arg	Ala 120	Leu	Thr	His	Ile	Asp 125	His	Ser	Leu	
Ser	Arg 130	Gln	Asn	Cys	Pro	Phe 135	Leu	Ala	Gly	Glu	Thr 140	Glu	Ser	Leu	Ala	
Asp 145	Ile	Val	Leu	Trp	Gly 150	Ala	Leu	Tyr	Pro	Leu 155	Leu	Gln	Asp	Pro	Ala 160	
Tyr	Leu	Pro	Glu	Glu 165	Leu	Ser	Ala	Leu	His 170	Ser	Trp	Phe	Gln	Thr 175	Leu	
Ser	Thr	Gln	Glu 180	Pro	Cys	Gln	Arg	Ala 185	Ala	Glu	Thr	Val	Leu 190	Lys	Gln	
Gln	Gly	Val 195	Leu	Ala	Leu	Arg	Pro 200	Tyr	Leu	Gln	Lys	Gln 205	Pro	Gln	Pro	
Ser	Pro 210	Ala	Glu	Gly	Arg	Ala 215	Val	Thr	Asn	Glu	Pro 220	Glu	Val	Ala	Сув	
Gly 225	Trp	Arg	Lys	Glu	Сув 230	Ala	His	His	Gln	Сув 235	Pro	Pro	Leu	Arg	Gln 240	
Gln	Cys	Pro	Pro	Pro 245	Trp	Glu	His	His	Trp 250	Leu	CÀa	Ala	Gln	Сув 255	Arg	
Сув	Leu	Сув	Gln 260	Val	Leu	Ser	Pro	Pro 265	Pro	Val	Glu	His	Pro 270	Leu	Ser	
Val	Trp	Asp 275	Arg													
<211 <212	.> LE :> T	ENGTI (PE :	O NO H: 83 DNA ISM:	31	o sal	pien	₹									
< 400)> SI	EQUEI	NCE:	35												
atga	ıgact	gt t	tagt	gagt	ga t	ggcg	caaq	g ggt	tgct	tgc	cggt	tgct	ggc (egee	gccggg	60
agaç	laaad	999 9	gcaga	agca	ga g	gtgc	cat	c ago	cacto	gtag	gcc	cggaa	aga 1	ttgtg	gtggtc	120
ccgt	tcct	ga d	cccg	geeta	aa g	gtcc	ctgt	c ttg	gcago	ctgg	ataç	gegge	caa (ctaco	ctcttc	180
tcca	ctaç	gtg (caato	etge	cg at	att	tttt	ttç	gttat	ctg	gct	ggga	gca a	agato	gacctc	240
acta	acca	agt (ggct	ggaat	g g	gaag	cgaca	a gaç	gatgo	cagc	cago	cttt	gtc 1	tgctç	gccctg	300
tact	attt	ag t	tggt	ccaa	gg ca	aaga	aggg	g gaa	agato	gttc	ttg	gttca	agt 🤅	gegga	agagcc	360
ctga	ctca	aca t	ttgad	ccaca	ag ct	tga	gtcgt	cag	gaact	gtc	cttt	taat	ggc 1	tgggg	gagaca	420
gaat	ctct	ag o	ccga	catt	gt ti	tgt	3999	a gco	cctat	cacc	catt	tacto	gca a	agato	cccgcc	480
tacc	tec	ctg a	aggaç	getga	ag to	gecet	gca	c ago	ctggt	tcc	agad	cact	gag 1	tacco	caggaa	540
ccat	gtca	agc (gagct	gcaç	ga ga	actg	tacto	g aaa	acago	caag	gtgt	tcct	ggc 1	tctc	eggeet	600
tacc	tcca	aaa a	agcaç	gece	ca go	ccca	gece	c gct	gag	ggaa	ggg	ctgt	cac (caato	gagcct	. 660
gagg	jttgo	cct q	gtgg	ctgga	ag aa	aagga	aatgi	c gct	cato	cacc	agt	gacat	tee (cttac	cgtcaa	720

-continued

caatgtcccc caccttggga acatcattgg ttgtgtgctc agtgccgatg tctttgccag gtactctcgc ctccgccagt ggaacaccct ctatctgtgt gggacagatg a 831 <210> SEQ ID NO 36 <211> LENGTH: 273 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 36 Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu 70 Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu 120 Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala 135 Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu Gln Asp Pro Ala Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp Phe Gln Thr Leu 170 Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln 185 Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys Gln Pro Gln Pro 200 Ser Pro Ala Glu Gly Arg Ala Val Thr Asn Glu Pro Glu Glu Glu Glu Leu Ala Thr Leu Ser Glu Glu Glu Ile Ala Met Ala Val Thr Ala Trp Glu Lys Gly Leu Glu Ser Leu Pro Pro Leu Arg Pro Gln Gln Asn Pro Val Trp Thr Cys Ile Ser Ser Trp Pro Lys Thr Met Phe Leu Ser Ile Ala <210> SEQ ID NO 37 <211> LENGTH: 822 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 37 atgagactgt tegtgagtga tggegteeeg ggttgettge eggtgetgge egeegeeggg 60 agagcccggg gcagagcaga ggtgctcatc agcactgtag gcccggaaga ttgtgtggtc 120 ccgttcctga cccggcctaa ggtccctgtc ttgcagctgg atagcggcaa ctacctcttc

tccactagto	, caato	tgccg	atatt	tttt	t tto	gttat	ctg	gct	gggag	gca a	agato	gacctc	2	240
actaaccagt	ggete	gaatg	ggaag	cgaca	a ga	gctgo	agc	cago	ettte	gtc 1	tgctç	gccctg	3	300
tactatttaç	ı tggto	caagg	caaga	agggg	g gaa	agato	gttc	ttg	gttca	agt (gegga	agagcc	3	360
ctgactcaca	ttgac	cacag	cttga	gtcgt	caç	gaact	gtc	cttt	cctç	ggc 1	tgggg	gagaca	4	120
gaatctctag	g ccgac	attgt	tttgt	gggga	a gc	cctat	acc	catt	acto	gca a	agato	ccgcc	4	180
tacctccctc	g aggag	gctgag	tgccc	tgcad	c ago	ctggt	tcc	agad	cacto	gag 1	tacco	aggaa	5	540
ccatgtcago	gagct	gcaga	gactg	tacto	g aaa	acago	aag	gtgt	ccts	ggc 1	tata	eggeet	6	500
tacctccaaa	agcag	jcccca	gccca	geeed	get	tgagg	ggaa	ggg	etgto	cac (caato	gagcct	6	60
gaggaggagg	g agete	gctac	cctat	ctgag	g gaq	ggaga	ttg	ctat	ggct	gt 1	tacto	gcttgg	7	720
gagaagggco	: tagaa	agttt	gcccc	cgcto	g cg	geeed	agc	agaa	atcca	agt (gtgga	acctgt	7	780
atcagttcat	ggcca	aagac	aatgt	tcctt	tc	cataç	gctt	ag					8	322
<210> SEQ <211> LENG <212> TYPE <213> ORGA	TH: 87 E: PRT ANISM:	76 Homo	sapien	s										
Met Arg Le		Val S	er Asp	Gly	Val		Gly	Cys	Leu	Pro		Leu		
1	. 01	5	1 - 7	G1	3	10	a 1	*** 7	.	T 1 -	15	ml		
Ala Ala Al	20	Arg A	la Arg	GIŸ	Arg 25	Ala	GIU	vai	ьeu	30	Ser	Thr		
Val Gly Pr 35		Asp C	ys Val	Val 40	Pro	Phe	Leu	Thr	Arg 45	Pro	Lys	Val		
Pro Val Le 50	eu Gln	Leu A	sp Ser 55	Gly	Asn	Tyr	Leu	Phe 60	Ser	Thr	Ser	Ala		
Ile Cys Ar 65	g Tyr	Phe Pl		Leu	Ser	Gly	Trp 75	Glu	Gln	Asp	Asp	Leu 80		
Thr Asn Gl	n Trp	Leu G 85	lu Trp	Glu	Ala	Thr 90	Glu	Leu	Gln	Pro	Ala 95	Leu		
Ser Ala Al	a Leu 100	Tyr T	yr Leu	Val	Val 105	Gln	Gly	ГÀз	ГÀа	Gly 110	Glu	Asp		
Val Leu Gl 11	-	Val A	rg Arg	Ala 120	Leu	Thr	His	Ile	Asp 125	His	Ser	Leu		
Ser Arg Gl 130	n Asn	Cys P	ro Phe 135		Ala	Gly	Glu	Thr 140	Glu	Ser	Leu	Ala		
Asp Ile Va 145	ıl Leu		ly Ala 50	Leu	Tyr	Pro	Leu 155	Leu	Gln	Asp	Pro	Ala 160		
Tyr Leu Pr	o Glu	Glu L 165	eu Ser	Ala	Leu	His 170	Ser	Trp	Phe	Gln	Thr 175	Leu		
Ser Thr Gl	n Glu 180	Pro C	ys Gln	Arg	Ala 185	Ala	Glu	Thr	Val	Leu 190	ГХа	Gln		
Gln Gly Va		Ala L	eu Arg	Pro 200	Tyr	Leu	Gln	Lys	Gln 205	Pro	Gln	Pro		
Ser Pro Al	a Glu	Gly A	rg Ala 215	Val	Thr	Asn	Glu	Pro 220	Glu	Glu	Glu	Glu		
Leu Ala Th	ır Leu		lu Glu 30	Glu	Ile	Ala	Met 235	Ala	Val	Thr	Ala	Trp 240		
Glu Lys Gl	y Leu	Glu S	er Leu	Pro	Pro	Leu 250	Arg	Pro	Gln	Gln	Asn 255	Pro		

_															
Val	Leu	Pro	Val 260	Ala	Gly	Glu	Arg	Asn 265	Val	Leu	Ile	Thr	Ser 270	Ala	Leu
Pro	Tyr	Val 275	Asn	Asn	Val	Pro	His 280	Leu	Gly	Asn	Ile	Ile 285	Gly	Cys	Val
Leu	Ser 290	Ala	Asp	Val	Phe	Ala 295	Arg	Tyr	Ser	Arg	Leu 300	Arg	Gln	Trp	Asn
Thr 305	Leu	Tyr	Leu	Сла	Gly 310	Thr	Asp	Glu	Tyr	Gly 315	Thr	Ala	Thr	Glu	Thr 320
Lys	Ala	Leu	Glu	Glu 325	Gly	Leu	Thr	Pro	Gln 330	Glu	Ile	Сув	Asp	Lys 335	Tyr
His	Ile	Ile	His 340	Ala	Asp	Ile	Tyr	Arg 345	Trp	Phe	Asn	Ile	Ser 350	Phe	Asp
Ile	Phe	Gly 355	Arg	Thr	Thr	Thr	Pro 360	Gln	Gln	Thr	ГÀа	Ile 365	Thr	Gln	Asp
Ile	Phe 370	Gln	Gln	Leu	Leu	Lys 375	Arg	Gly	Phe	Val	Leu 380	Gln	Asp	Thr	Val
Glu 385	Gln	Leu	Arg	CÀa	Glu 390	His	CÀa	Ala	Arg	Phe 395	Leu	Ala	Asp	Arg	Phe 400
Val	Glu	Gly	Val	Cys 405	Pro	Phe	Cys	Gly	Tyr 410	Glu	Glu	Ala	Arg	Gly 415	Asp
Gln	Cys	Asp	Lys 420	CÀa	Gly	Lys	Leu	Ile 425	Asn	Ala	Val	Glu	Leu 430	Lys	Lys
Pro	Gln	Сув 435	Lys	Val	CÀa	Arg	Ser 440	CÀa	Pro	Val	Val	Gln 445	Ser	Ser	Gln
His	Leu 450	Phe	Leu	Asp	Leu	Pro 455	Lys	Leu	Glu	Lys	Arg 460	Leu	Glu	Glu	Trp
Leu 465	Gly	Arg	Thr	Leu	Pro 470	Gly	Ser	Asp	Trp	Thr 475	Pro	Asn	Ala	Gln	Phe 480
Ile	Thr	Arg	Ser	Trp 485	Leu	Arg	Asp	Gly	Leu 490	Lys	Pro	Arg	Cys	Ile 495	Thr
Arg	Asp	Leu	500	Trp	Gly	Thr	Pro	Val 505	Pro	Leu	Glu	Gly	Phe 510	Glu	Asp
Lys	Val	Phe 515	Tyr	Val	Trp	Phe	Asp 520	Ala	Thr	Ile	Gly	Tyr 525	Leu	Ser	Ile
Thr	Ala 530	Asn	Tyr	Thr	Asp	Gln 535	Trp	Glu	Arg	Trp	Trp 540	Lys	Asn	Pro	Glu
Gln 545	Val	Asp	Leu		Gln 550		Met	Ala		Asp 555	Asn	Val	Pro		His 560
Ser	Leu	Val	Phe	Pro 565	CAa	Ser	Ala	Leu	Gly 570	Ala	Glu	Asp	Asn	Tyr 575	Thr
Leu	Val	Ser	His 580	Leu	Ile	Ala	Thr	Glu 585	Tyr	Leu	Asn	Tyr	Glu 590	Asp	Gly
Lys	Phe	Ser 595	ГÀа	Ser	Arg	Gly	Val 600	Gly	Val	Phe	Gly	Asp 605	Met	Ala	Gln
Asp	Thr 610	Gly	Ile	Pro	Ala	Asp 615	Ile	Trp	Arg	Phe	Tyr 620	Leu	Leu	Tyr	Ile
Arg 625	Pro	Glu	Gly	Gln	Asp 630	Ser	Ala	Phe	Ser	Trp 635	Thr	Asp	Leu	Leu	Leu 640
Lys	Asn	Asn	Ser	Glu 645	Leu	Leu	Asn	Asn	Leu 650	Gly	Asn	Phe	Ile	Asn 655	Arg
Ala	Gly	Met	Phe	Val	Ser	Lys	Phe	Phe	Gly	Gly	Tyr	Val	Pro 670	Glu	Met
Val	Leu	Thr	Pro	Asp	Asp	Gln	Arg	Leu	Leu	Ala	His	Val	Thr	Leu	Glu

-continued

		675					680					685			
Leu	Gln 690	His	Tyr	His	Gln	Leu 695	Leu	Glu	Lys	Val	Arg 700	Ile	Arg	Asp	Ala
Leu 705	Arg	Ser	Ile	Leu	Thr 710	Ile	Ser	Arg	His	Gly 715	Asn	Gln	Tyr	Ile	Gln 720
Val	Asn	Glu	Pro	Trp 725	Lys	Arg	Ile	Lys	Gly 730	Ser	Glu	Ala	Asp	Arg 735	Gln
Arg	Ala	Gly	Thr 740	Val	Thr	Gly	Leu	Ala 745	Val	Asn	Ile	Ala	Ala 750	Leu	Leu
Ser	Val	Met 755	Leu	Gln	Pro	Tyr	Met 760	Pro	Thr	Val	Ser	Ala 765	Thr	Ile	Gln
Ala	Gln 770	Leu	Gln	Leu	Pro	Pro 775	Pro	Ala	Cys	Ser	Ile 780	Leu	Leu	Thr	Asn
Phe 785	Leu	Cys	Thr	Leu	Pro 790	Ala	Gly	His	Gln	Ile 795	Gly	Thr	Ala	Lys	Thr 800
Ser	Pro	Lys	Pro	Ala 805	Val	Val	Glu	Thr	Val 810	Thr	Thr	Ala	Lys	Pro 815	Gln
Gln	Ile	Gln	Ala 820	Leu	Met	Asp	Glu	Val 825	Thr	Lys	Gln	Gly	Asn 830	Ile	Val
Arg	Glu	Leu 835	Lys	Ala	Gln	Lys	Ala 840	Asp	Lys	Asn	Glu	Val 845	Ala	Ala	Glu
Val	Ala 850	Lys	Leu	Leu	Asp	Leu 855	Lys	Lys	Gln	Leu	Ala 860	Val	Ala	Glu	Gly
Lys 865	Pro	Pro	Glu	Ala	Pro 870	Lys	Gly	Lys	Lys	Lys 875	Lys				
<210)> SI	EQ II	ON C	39											

<400> SEQUENCE: 39

atgagactgt tcgtgagtga tggcgtcccg ggttgcttgc cggtgctggc cgccgccggg 60 agageceggg geagageaga ggtgeteate ageaetgtag geeeggaaga ttgtgtggte 120 ccgttcctga cccggcctaa ggtccctgtc ttgcagctgg atagcggcaa ctacctcttc 180 tccactagtg caatctgccg atatttttt ttgttatctg gctgggagca agatgacctc 240 actaaccagt ggctggaatg ggaagcgaca gagctgcagc cagctttgtc tgctgccctg 300 tactatttag tggtccaagg caagaagggg gaagatgttc ttggttcagt gcggagagcc 360 ctgactcaca ttgaccacag cttgagtcgt cagaactgtc ctttcctggc tggggagaca gaatetetag eegacattgt tttgtgggga geeetatace cattactgca agateeegee tacctccctg aggagctgag tgccctgcac agctggttcc agacactgag tacccaggaa 540 ccatgicage gagetgeaga gactgiactg aaacagcaag gigteetgge teteeggeet 600 tacctccaaa agcagcccca gcccagcccc gctgagggaa gggctgtcac caatgagcct 660 gaggaggagg agctggctac cctatctgag gaggagattg ctatggctgt tactgcttgg gagaagggcc tagaaagttt gcccccgctg cggccccagc agaatccagt gttgcctgtg 780 gctggagaaa ggaatgtgct catcaccagt gccctccctt acgtcaacaa tgtcccccac 840 900 cttgggaaca tcattggttg tgtgctcagt gccgatgtct ttgccaggta ctctcgcctc cgccagtgga acaccctcta tctgtgtggg acagatgagt atggtacagc aacagagacc 960 aaggetetgg aggagggaet aaccecccag gagatetgeg acaagtacca cateatecat

<211> LENGTH: 2631

<212> TYPE: DNA

<213 > ORGANISM: Homo sapiens

-continued

```
getgacatet accgetggtt taacattteg tttgatattt ttggtegeac caccaeteca
                                                                    1080
cagcagacca aaatcaccca ggacattttc cagcagttgc tgaaacgagg ttttgtgctg
                                                                    1140
caagatactg tggagcaact gcgatgtgag cactgtgctc gcttcctggc tgaccgcttc
                                                                    1200
gtggagggcg tgtgtccctt ctgtggctat gaggaggctc ggggtgacca gtgtgacaag
                                                                    1260
tgtggcaagc tcatcaatgc tgtcgagctt aagaagcctc agtgtaaagt ctgccgatca
                                                                    1320
                                                                    1380
tgccctgtgg tgcagtcgag ccagcacctg tttctggacc tgcctaagct ggagaagcga
ctggaggagt ggttggggag gacattgcct ggcagtgact ggacacccaa tgcccagttt
                                                                    1440
atcacccgtt cttggcttcg ggatggcctc aagccacgct gcataacccg agacctcaaa
                                                                    1500
tggggaaccc ctgtaccctt agaaggtttt gaagacaagg tattctatgt ctggtttgat
                                                                    1560
gccactattg gctatctgtc catcacagcc aactacacag accagtggga gagatggtgg
                                                                    1620
aagaacccag agcaagtgga cctgtatcag ttcatggcca aagacaatgt tcctttccat
                                                                    1680
agettagtet tteettgete agecetagga getgaggata aetataeett ggteageeae
                                                                    1740
ctcattgcta cagagtacct gaactatgag gatgggaaat tctctaagag ccgcggtgtg
                                                                    1800
qqaqtqtttq qqqacatqqc ccaqqacacq qqqatccctq ctqacatctq qcqcttctat
                                                                    1860
ctqctqtaca ttcqqcctqa qqqccaqqac aqtqctttct cctqqacqqa cctqctqctq
                                                                    1920
aagaataatt ctgagctgct taacaacctg ggcaacttca tcaacagagc tgggatgttt
                                                                    1980
gtgtctaagt tctttggggg ctatgtgcct gagatggtgc tcacccctga tgatcagegc
                                                                    2040
ctgctggccc atgtcaccct ggagctccag cactatcacc agctacttga gaaggttcgg
                                                                    2100
                                                                    2160
atcogggatg cottgogoag tatcotcaco atatotogac atggcaacca atatattoag
gtgaatgagc cctggaagcg gattaaaggc agtgaggctg acaggcaacg ggcaggaaca
                                                                    2220
gtgactggct tggcagtgaa tatagctgcc ttgctctctg tcatgcttca gccttacatg
                                                                    2280
cccacggtta gtgccacaat ccaggcccag ctgcagctcc cacctccagc ctgcagtatc
                                                                    2340
ctgctgacaa acttcctgtg taccttacca gcaggacacc agattggcac agcaaaaacg
                                                                    2400
teccegaage cageagttgt agagaetgtt acaacageea ageeacagea gatacaageg
                                                                    2460
ctgatggatg aagtgacaaa acaaggaaac attgtccgag aactgaaagc acaaaaggca
                                                                    2520
gacaagaacg aggttgctgc ggaggtggcg aaactcttgg atctaaagaa acagttggct
                                                                    2580
gtagctgagg ggaaaccccc tgaagcccct aaaggcaaga agaaaaagta a
                                                                    2631
<210> SEQ ID NO 40
<211> LENGTH: 50
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 40
tcttctccac tagtgcaatc tgccggtatt ctatgtctgg tttgatgcca
                                                                       50
<210> SEQ ID NO 41
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 41
Phe Ser Thr Ser Ala Ile Cys Arg Tyr Ser Met Ser Gly Leu Met Pro
                                    10
```

<210> SEQ ID NO 42 <211> LENGTH: 50

```
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEOUENCE: 42
gcaccaccac tccacagcag accaaaagcc tcagtgtaaa gtctgccgat
                                                                        50
<210> SEQ ID NO 43
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 43
Thr Thr Thr Pro Gln Gln Thr Lys Ser Leu Ser Val Lys Ser Ala Asp
<210> SEQ ID NO 44
<211> LENGTH: 50
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 44
accettagaa ggttttgaag acaaggtgga cetgtateag tteatggeea
                                                                        50
<210> SEQ ID NO 45
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 45
Pro Leu Glu Gly Phe Glu Asp Lys Val Asp Leu Tyr Gln Phe Met Ala
<210> SEQ ID NO 46
<211> LENGTH: 50
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 46
gagatggtgg aagaacccag agcaaagtac ctgaactatg aggatgggaa
                                                                        50
<210> SEQ ID NO 47
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 47
Arg Trp Trp Lys Asn Pro Glu Gln Ser Thr
<210> SEQ ID NO 48
<211> LENGTH: 50
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 48
ggattaaagg cagtgaggct gacaggtcag tcccttgttc caaaaattgg
<210> SEQ ID NO 49
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 49
Ile Lys Gly Ser Glu Ala Asp Arg Ser Val Pro Cys Ser Lys Asn Trp
```

```
10
                                                          15
<210> SEQ ID NO 50
<211> LENGTH: 50
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 50
aaggcagcgc tttggagggg gccagggaaa cattgtccga gaactgaaag
                                                                        50
<210> SEQ ID NO 51
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 51
 \hbox{Arg Gln Arg Phe Gly Gly Gln Gly Asn Ile Val Arg Glu Leu Lys} 
<210> SEQ ID NO 52
<211> LENGTH: 50
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 52
tettetecae tagtgeaate tgeegaggag etgagtgeee tgeacagetg
                                                                        50
<210> SEQ ID NO 53
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEOUENCE: 53
Phe Ser Thr Ser Ala Ile Cys Arg Gly Ala Glu Cys Pro Ala Gln Leu
               5
                                    10
<210> SEQ ID NO 54
<211> LENGTH: 50
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 54
aagggctgtc accaatgagc ctgaggttgc ctgtggctgg agaaaggaat
                                                                        50
<210> SEQ ID NO 55
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 55
Arg Ala Val Thr Asn Glu Pro Glu Val Ala Cys Gly Trp Arg Lys Glu
<210> SEQ ID NO 56
<211> LENGTH: 50
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 56
cgctgcggcc ccagcagaat ccagtgtgga cctgtatcag ttcatggcca
<210> SEQ ID NO 57
<211> LENGTH: 16
<212> TYPE: PRT
```

-continued

```
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 57
Leu Arg Pro Gln Gln Asn Pro Val Trp Thr Cys Ile Ser Ser Trp Pro
<210> SEQ ID NO 58
<211> LENGTH: 50
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 58
accagcagga caccagattg gcacagcaaa aacgtccccg aagccagcag
<210> SEQ ID NO 59
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 59
Pro Ala Gly His Gln Ile Gly Thr Ala Lys Thr Ser Pro Lys Pro Ala
                                   10
<210> SEQ ID NO 60
<211> LENGTH: 263
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 60
Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu
Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr
                               25
Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val
                       40
Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala
Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu
Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu
Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp
Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu
Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala
Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu Gln Asp Pro Ala
Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp Phe Gln Thr Leu
                                   170
Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln
                               185
Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys Gln Pro Gln Pro
Ser Pro Ala Glu Gly Arg Ala Val Thr Asn Glu Pro Glu Glu Glu
                       215
```

Leu Ala Thr Leu Ser Glu Glu Glu Ile Ala Met Ala Val Thr Ala Trp

225 235 Glu Lys Gly Leu Glu Ser Leu Pro Pro Leu Arg Pro Gln Gln Asn Pro 245 250 Val Leu Pro Val Ala Gly Glu 260 <210> SEQ ID NO 61 <211> LENGTH: 789 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 61 atgagactgt tcgtgagtga tggcgtcccg ggttgcttgc cggtgctggc cgccgccggg agagcccggg gcagagcaga ggtgctcatc agcactgtag gcccggaaga ttgtgtggtc cegtteetga eeeggeetaa ggteeetgte ttgeagetgg atageggeaa etaeetette tocactagtg caatctgccg atatttttt ttgttatctg gctgggagca agatgacctc 240 actaaccagt ggctggaatg ggaagcgaca gagctgcagc cagctttgtc tgctgccctg 300 tactatttag tggtccaagg caagaagggg gaagatgttc ttggttcagt gcggagagcc 360 ctgactcaca ttgaccacag cttgagtcgt cagaactgtc ctttcctggc tggggagaca 420 gaatetetag eegacattgt titgtgggga geeetataee eattaetgea agateeegee 480 tacctccctg aggagctgag tgccctgcac agctggttcc agacactgag tacccaggaa 540 ccatgtcagc gagctgcaga gactgtactg aaacagcaag gtgtcctggc tctccggcct 600 tacetecaaa ageageeeca geecageeee getgagggaa gggetgteae caatgageet 660 gaggaggagg agctggctac cctatctgag gaggagattg ctatggctgt tactgcttgg 720 gagaagggcc tagaaagttt gcccccgctg cggccccagc agaatccagt gttgcctgtg 780 gctggagaa 789 <210> SEQ ID NO 62 <211> LENGTH: 197 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 62 Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr 25 Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu 75 Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp 105 Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu 120 Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala

135

140

130

-continued

Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu Gln Asp Pro Ala 145 150 155 Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp Phe Gln Thr Leu Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln 185 Gln Gly Val Leu Ala 195 <210> SEQ ID NO 63 <211> LENGTH: 591 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 63 atgagactgt tcgtgagtga tggcgtcccg ggttgcttgc cggtgctggc cgccgccggg 60 agageceggg geagageaga ggtgeteate ageaetgtag geeeggaaga ttgtgtggte cogttoctga cooggodtaa ggtocotgto ttgcagotgg atagoggdaa ctacototto 180 tccactagtg caatetgeeg atatttttt ttgttatetg getgggagea agatgaeete 240 actaaccagt ggctggaatg ggaagcgaca gagctgcagc cagctttgtc tgctgccctg 300 tactatttag tggtccaagg caagaagggg gaagatgttc ttggttcagt gcggagagcc 360 ctgactcaca ttgaccacag cttgagtcgt cagaactgtc ctttcctggc tggggagaca 420 gaatetetag eegacattgt tttgtgggga geeetataee eattaetgea agateeegee 480 tacctccctg aggagctgag tgccctgcac agctggttcc agacactgag tacccaggaa 540 ccatgtcagc gagctgcaga gactgtactg aaacagcaag gtgtcctggc t 591 <210> SEQ ID NO 64 <211> LENGTH: 214 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 64 Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr 25 Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp 100 105 Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu 120 125 Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu Gln Asp Pro Ala 155 Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp Phe Gln Thr Leu

170 Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln 180 185 Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys Gln Pro Gln Pro 200 Ser Pro Ala Glu Gly Arg 210 <210> SEQ ID NO 65 <211> LENGTH: 642 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 65 atgagactgt tcgtgagtga tggcgtcccg ggttgcttgc cggtgctggc cgccgccggg 60 agageceggg geagageaga ggtgeteate ageactgtag geeeggaaga ttgtgtggte 120 ccgttcctga cccggcctaa ggtccctgtc ttgcagctgg atagcggcaa ctacctcttc 180 tccactagtg caatctgccg atatttttt ttgttatctg gctgggagca agatgacctc 240 actaaccagt ggctggaatg ggaagcgaca gagctgcagc cagctttgtc tgctgccctg 300 tactatttag tggtccaagg caagaagggg gaagatgttc ttggttcagt gcggagagcc 360 ctgactcaca ttgaccacag cttgagtcgt cagaactgtc ctttcctggc tggggagaca 420 480 gaatetetag eegacattgt tttgtgggga geeetatace cattactgca agateeegee tacctccctg aggagctgag tgccctgcac agctggttcc agacactgag tacccaggaa 540 ccatgtcagc gagetgcaga gactgtactg aaacagcaag gtgtcctggc tctccggcct 600 tacctccaaa agcagcccca gcccagcccc gctgagggaa gg 642 <210> SEQ ID NO 66 <211> LENGTH: 221 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEOUENCE: 66 Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu 90 Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu 120 Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala 135 Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu Gln Asp Pro Ala 150 155

-continued

Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp Phe Gln Thr Leu 165 170 Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln 185 Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys Gln Pro Gln Pro 200 Ser Pro Ala Glu Gly Arg Ala Val Thr Asn Glu Pro Glu 215 <210> SEQ ID NO 67 <211> LENGTH: 663 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEOUENCE: 67 atgagactgt tegtgagtga tggcqteeeg ggttgettge eggtgetgge egeegeeggg 60 agaqcccqqq qcaqaqcaqa qqtqctcatc aqcactqtaq qcccqqaaqa ttqtqtqc cegtteetga eeeggeetaa ggteeetgte ttgeagetgg atageggeaa etacetette 180 tccactagtg caatctgccg atatttttt ttgttatctg gctgggagca agatgacctc 240 actaaccagt ggctggaatg ggaagcgaca gagctgcagc cagctttgtc tgctgccctg 300 tactatttag tggtccaagg caagaagggg gaagatgttc ttggttcagt gcggagagcc 360 ctgactcaca ttgaccacag cttgagtcgt cagaactgtc ctttcctggc tggggagaca 420 gaatetetag eegacattgt tttgtgggga geeetataee eattaetgea agateeegee 480 tacctccctg aggagctgag tgccctgcac agctggttcc agacactgag tacccaggaa 540 ccatgtcagc gagctgcaga gactgtactg aaacagcaag gtgtcctggc tctccggcct 600 tacetecaaa ageageeeca geecageeec getgagggaa gggetgteac caatgageet 660 gag 663 <210> SEQ ID NO 68 <211> LENGTH: 251 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with N-terminal 6xHis affinity tag <400> SEQUENCE: 68 Met His His His His His Gly Lys Pro Ile Pro Asn Pro Leu Leu 10 Gly Leu Asp Ser Thr Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu 85 90 Gln Asp Asp Leu Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu 105 Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys 120 115

-continued

Lys Gly Glu Asp Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile 130 Asp His Ser Leu Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu 170 Gln Asp Pro Ala Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp Phe Gln Thr Leu Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys Gln Pro Gln Pro Ser Pro Ala Glu Gly Arg Ala Val Thr Asn Glu Pro Glu Glu Glu Leu Ala Thr Leu Ser Glu Glu 245 <210> SEQ ID NO 69 <211> LENGTH: 251 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with C-terminal 6xHis affinity tag <400> SEOUENCE: 69 Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu 10 Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val 40 Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu Gln Asp Pro Ala 155 Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp Phe Gln Thr Leu Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln 185 Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys Gln Pro Gln Pro 200 Ser Pro Ala Glu Gly Arg Ala Val Thr Asn Glu Pro Glu Glu Glu Glu 215 220 Leu Ala Thr Leu Ser Glu Glu Gly Lys Pro Ile Pro Asn Pro Leu Leu 230 235

-continued

```
Gly Leu Asp Ser Thr His His His His His
              245
<210> SEQ ID NO 70
<211> LENGTH: 283
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with
     N-terminal 6xHis affinity tag
<400> SEQUENCE: 70
Met His His His His His Gly Lys Pro Ile Pro Asn Pro Leu Leu
Gly Leu Asp Ser Thr Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys
Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val
Leu Ile Ser Thr Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr
Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe 65 70 75 80
Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu
             85
                            90
Gln Asp Asp Leu Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu
          100
                              105
Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys
Lys Gly Glu Asp Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile
               135
Asp His Ser Leu Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr
Glu Ser Leu Ala Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu
Gln Asp Pro Ala Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp
Phe Gln Thr Leu Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr
                200
Val Leu Lys Gln Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys
Gln Pro Gln Pro Ser Pro Ala Glu Gly Arg Ala Val Thr Asn Glu Pro
Glu Glu Glu Glu Leu Ala Thr Leu Ser Glu Glu Glu Ile Ala Met Ala
Val Thr Ala Trp Glu Lys Gly Leu Glu Ser Leu Pro Pro Leu Arg Pro
Gln Gln Asn Pro Val Leu Pro Val Ala Gly Glu
     275
                          280
<210> SEQ ID NO 71
<211> LENGTH: 283
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with
     C-terminal 6xHis affinity tag
```

<400> SEQUENCE: 71

Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr \$20\$Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu 120 Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala 135 Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu Gln Asp Pro Ala 150 Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp Phe Gln Thr Leu 170 Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln 185 Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys Gln Pro Gln Pro 200 Ser Pro Ala Glu Gly Arg Ala Val Thr Asn Glu Pro Glu Glu Glu Glu Leu Ala Thr Leu Ser Glu Glu Glu Ile Ala Met Ala Val Thr Ala Trp 230 235 Glu Lys Gly Leu Glu Ser Leu Pro Pro Leu Arg Pro Gln Gln Asn Pro 250 Val Leu Pro Val Ala Gly Glu Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr His His His His His His <210> SEQ ID NO 72 <211> LENGTH: 135 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with N-terminal 6xHis affinity tag <400> SEQUENCE: 72 Met His His His His His Gly Lys Pro Ile Pro Asn Pro Leu Leu 10 Gly Leu Asp Ser Thr Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys 25 Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr

Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe

```
Ser Thr Ser Ala Ile Cys Arg Tyr Ser Met Ser Gly Leu Met Pro Leu
               85
                                  90
Leu Ala Ile Cys Pro Ser Gln Pro Thr Thr Gln Thr Ser Gly Arg Asp
         100
                        105
Gly Gly Arg Thr Gln Ser Lys Trp Thr Cys Ile Ser Ser Trp Pro Lys
             120
Thr Met Phe Leu Ser Ile Ala
<210> SEQ ID NO 73
<211> LENGTH: 135
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with
     C-terminal 6xHis affinity tag
<400> SEQUENCE: 73
Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu
                                 10
Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr
                              25
Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val
                           40
Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala
                    55
Ile Cys Arg Tyr Ser Met Ser Gly Leu Met Pro Leu Leu Ala Ile Cys
                   70
Pro Ser Gln Pro Thr Thr Gln Thr Ser Gly Arg Asp Gly Gly Arg Thr
Gln Ser Lys Trp Thr Cys Ile Ser Ser Trp Pro Lys Thr Met Phe Leu
                     105
                                                  110
Ser Ile Ala Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser
                        120
Thr His His His His His
  130
<210> SEQ ID NO 74
<211> LENGTH: 447
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with
     N-terminal 6xHis affinity tag
<400> SEQUENCE: 74
Met His His His His His Gly Lys Pro Ile Pro Asn Pro Leu Leu
Gly Leu Asp Ser Thr Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys
                              25
Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val
                          40
Leu Ile Ser Thr Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr
Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe
Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu
```

											-	con	tını	ued	
				85					90					95	
Gln	Asp	Asp	Leu 100	Thr	Asn	Gln	Trp	Leu 105	Glu	Trp	Glu	Ala	Thr 110	Glu	Leu
Gln	Pro	Ala 115	Leu	Ser	Ala	Ala	Leu 120	Tyr	Tyr	Leu	Val	Val 125	Gln	Gly	Lys
ГÀз	Gly 130	Glu	Asp	Val	Leu	Gly 135	Ser	Val	Arg	Arg	Ala 140	Leu	Thr	His	Ile
Asp 145	His	Ser	Leu	Ser	Arg 150	Gln	Asn	Cha	Pro	Phe 155	Leu	Ala	Gly	Glu	Thr 160
Glu	Ser	Leu	Ala	Asp 165	Ile	Val	Leu	Trp	Gly 170	Ala	Leu	Tyr	Pro	Leu 175	Leu
Gln	Asp	Pro	Ala 180	Tyr	Leu	Pro	Glu	Glu 185	Leu	Ser	Ala	Leu	His 190	Ser	Trp
Phe	Gln	Thr 195	Leu	Ser	Thr	Gln	Glu 200	Pro	Cys	Gln	Arg	Ala 205	Ala	Glu	Thr
Val	Leu 210	Lys	Gln	Gln	Gly	Val 215	Leu	Ala	Leu	Arg	Pro 220	Tyr	Leu	Gln	Lys
Gln 225	Pro	Gln	Pro	Ser	Pro 230	Ala	Glu	Gly	Arg	Ala 235	Val	Thr	Asn	Glu	Pro 240
Glu	Glu	Glu	Glu	Leu 245	Ala	Thr	Leu	Ser	Glu 250	Glu	Glu	Ile	Ala	Met 255	Ala
Val	Thr	Ala	Trp 260	Glu	Lys	Gly	Leu	Glu 265	Ser	Leu	Pro	Pro	Leu 270	Arg	Pro
Gln	Gln	Asn 275	Pro	Val	Leu	Pro	Val 280	Ala	Gly	Glu	Arg	Asn 285	Val	Leu	Ile
Thr	Ser 290	Ala	Leu	Pro	Tyr	Val 295	Asn	Asn	Val	Pro	His 300	Leu	Gly	Asn	Ile
Ile 305	Gly	Cha	Val	Leu	Ser 310	Ala	Asp	Val	Phe	Ala 315	Arg	Tyr	Ser	Arg	Leu 320
Arg	Gln	Trp	Asn	Thr 325	Leu	Tyr	Leu	Cys	Gly 330	Thr	Asp	Glu	Tyr	Gly 335	Thr
Ala	Thr	Glu	Thr 340	Lys	Ala	Leu	Glu	Glu 345	Gly	Leu	Thr	Pro	Gln 350	Glu	Ile
CAa	Asp	Lys 355	Tyr	His	Ile	Ile	His 360	Ala	Asp	Ile	Tyr	Arg 365	Trp	Phe	Asn
Ile	Ser 370	Phe	Asp	Ile	Phe	Gly 375	Arg	Thr	Thr	Thr	Pro 380	Gln	Gln	Thr	ГЛя
Ser 385	Leu	Ser	Val	Lys	Ser 390	Ala	Asp	His	Ala	Leu 395	Trp	CÀa	Ser	Arg	Ala 400
Ser	Thr	CÀa	Phe	Trp 405	Thr	CÀa	Leu	Ser	Trp 410	Arg	Ser	Asp	Trp	Arg 415	Ser
Gly	Trp	Gly	Gly 420	His	CÀa	Leu	Ala	Val 425	Thr	Gly	His	Pro	Met 430	Pro	Ser
Leu	Ser	Pro 435	Val	Leu	Gly	Phe	Gly 440	Met	Ala	Ser	Ser	His 445	Ala	Ala	
<211 <212 <213 <220	0 > FI 3 > O	ENGTI PE: RGAN EATUI PHER	H: 44 PRT ISM: RE: INFO	47 Art:	rion	: Met	- chior	nyl t	RNA	Synt	theta	ase]	polyp	p e pt:	ide with

th

Met 1	Arg	Leu	Phe	Val 5	Ser	Asp	Gly	Val	Pro 10	Gly	CAa	Leu	Pro	Val 15	Leu
Ala	Ala	Ala	Gly 20	Arg	Ala	Arg	Gly	Arg 25	Ala	Glu	Val	Leu	Ile 30	Ser	Thr
Val	Gly	Pro 35	Glu	Asp	Cys	Val	Val 40	Pro	Phe	Leu	Thr	Arg 45	Pro	Lys	Val
Pro	Val 50	Leu	Gln	Leu	Asp	Ser 55	Gly	Asn	Tyr	Leu	Phe 60	Ser	Thr	Ser	Ala
Ile 65	Сув	Arg	Tyr	Phe	Phe 70	Leu	Leu	Ser	Gly	Trp 75	Glu	Gln	Asp	Asp	Leu 80
Thr	Asn	Gln	Trp	Leu 85	Glu	Trp	Glu	Ala	Thr 90	Glu	Leu	Gln	Pro	Ala 95	Leu
Ser	Ala	Ala	Leu 100	Tyr	Tyr	Leu	Val	Val 105	Gln	Gly	Lys	Lys	Gly 110	Glu	Asp
Val	Leu	Gly 115	Ser	Val	Arg	Arg	Ala 120	Leu	Thr	His	Ile	Asp 125	His	Ser	Leu
Ser	Arg 130	Gln	Asn	Cys	Pro	Phe 135	Leu	Ala	Gly	Glu	Thr 140	Glu	Ser	Leu	Ala
Asp 145	Ile	Val	Leu	Trp	Gly 150	Ala	Leu	Tyr	Pro	Leu 155	Leu	Gln	Asp	Pro	Ala 160
Tyr	Leu	Pro	Glu	Glu 165	Leu	Ser	Ala	Leu	His 170	Ser	Trp	Phe	Gln	Thr 175	Leu
Ser	Thr	Gln	Glu 180	Pro	САв	Gln	Arg	Ala 185	Ala	Glu	Thr	Val	Leu 190	Lys	Gln
Gln	Gly	Val 195	Leu	Ala	Leu	Arg	Pro 200	Tyr	Leu	Gln	Lys	Gln 205	Pro	Gln	Pro
Ser	Pro 210	Ala	Glu	Gly	Arg	Ala 215	Val	Thr	Asn	Glu	Pro 220	Glu	Glu	Glu	Glu
Leu 225	Ala	Thr	Leu	Ser	Glu 230	Glu	Glu	Ile	Ala	Met 235	Ala	Val	Thr	Ala	Trp 240
Glu	Lys	Gly	Leu	Glu 245	Ser	Leu	Pro	Pro	Leu 250	Arg	Pro	Gln	Gln	Asn 255	Pro
Val	Leu	Pro	Val 260	Ala	Gly	Glu	Arg	Asn 265	Val	Leu	Ile	Thr	Ser 270	Ala	Leu
Pro	Tyr	Val 275	Asn	Asn	Val	Pro	His 280	Leu	Gly	Asn	Ile	Ile 285	Gly	Cys	Val
Leu	Ser 290	Ala	Asp	Val	Phe	Ala 295		Tyr	Ser		Leu 300	Arg	Gln	Trp	Asn
Thr 305	Leu	Tyr	Leu	Сув	Gly 310	Thr	Asp	Glu	Tyr	Gly 315	Thr	Ala	Thr	Glu	Thr 320
Lys	Ala	Leu	Glu	Glu 325	Gly	Leu	Thr	Pro	Gln 330	Glu	Ile	Cys	Asp	335	Tyr
His	Ile	Ile	His 340	Ala	Asp	Ile	Tyr	Arg 345	Trp	Phe	Asn	Ile	Ser 350	Phe	Asp
Ile	Phe	Gly 355	Arg	Thr	Thr	Thr	Pro 360	Gln	Gln	Thr	Lys	Ser 365	Leu	Ser	Val
ГÀа	Ser 370	Ala	Asp	His	Ala	Leu 375	Trp	СЛа	Ser	Arg	Ala 380	Ser	Thr	Cha	Phe
Trp 385	Thr	Cys	Leu	Ser	Trp 390	Arg	Ser	Asp	Trp	Arg 395	Ser	Gly	Trp	Gly	Gly 400
His	СЛа	Leu	Ala	Val 405	Thr	Gly	His	Pro	Met 410	Pro	Ser	Leu	Ser	Pro 415	Val
Leu	Gly	Phe	Gly	Met	Ala	Ser	Ser	His	Ala	Ala	Gly	Lys	Pro	Ile	Pro

											-	con	tını	ued	
			420					425					430		
Asn	Pro	Leu 435	Leu	Gly	Leu	Asp	Ser 440	Thr	His	His	His	His 445	His	His	
<211 <212 <213 <220	L> LE 2> TY 3> OF 0> FE 3> OY	EQ II ENGTH YPE: RGANI EATUH THER	H: 50 PRT ISM: RE: INFO	57 Art: DRMA:	rion	: Met	hior	nyl t	:RNA	Synt	theta	ase]	oolyp	pepti	ide with
< 400)> SI	EQUE	ICE :	76											
Met 1	His	His	His	His 5	His	His	Gly	Lys	Pro 10	Ile	Pro	Asn	Pro	Leu 15	Leu
Gly	Leu	Asp	Ser 20	Thr	Arg	Leu	Phe	Val 25	Ser	Asp	Gly	Val	Pro 30	Gly	Cha
Leu	Pro	Val 35	Leu	Ala	Ala	Ala	Gly 40	Arg	Ala	Arg	Gly	Arg 45	Ala	Glu	Val
Leu	Ile 50	Ser	Thr	Val	Gly	Pro 55	Glu	Asp	Cha	Val	Val 60	Pro	Phe	Leu	Thr
Arg 65	Pro	Lys	Val	Pro	Val 70	Leu	Gln	Leu	Asp	Ser 75	Gly	Asn	Tyr	Leu	Phe 80
Ser	Thr	Ser	Ala	Ile 85	CAa	Arg	Tyr	Phe	Phe 90	Leu	Leu	Ser	Gly	Trp 95	Glu
Gln	Asp	Asp	Leu 100	Thr	Asn	Gln	Trp	Leu 105	Glu	Trp	Glu	Ala	Thr 110	Glu	Leu
Gln	Pro	Ala 115	Leu	Ser	Ala	Ala	Leu 120	Tyr	Tyr	Leu	Val	Val 125	Gln	Gly	Lys
Lys	Gly 130	Glu	Asp	Val	Leu	Gly 135	Ser	Val	Arg	Arg	Ala 140	Leu	Thr	His	Ile
Asp 145	His	Ser	Leu	Ser	Arg 150	Gln	Asn	CÀa	Pro	Phe 155	Leu	Ala	Gly	Glu	Thr 160
Glu	Ser	Leu	Ala	Asp 165	Ile	Val	Leu	Trp	Gly 170	Ala	Leu	Tyr	Pro	Leu 175	Leu
Gln	Asp	Pro	Ala 180	Tyr	Leu	Pro	Glu	Glu 185	Leu	Ser	Ala	Leu	His 190	Ser	Trp
Phe	Gln	Thr 195	Leu	Ser	Thr	Gln	Glu 200	Pro	CÀa	Gln	Arg	Ala 205	Ala	Glu	Thr
Val	Leu 210	ГÀа	Gln	Gln	Gly	Val 215	Leu	Ala	Leu	Arg	Pro 220	Tyr	Leu	Gln	ГЛа
Gln 225	Pro	Gln	Pro	Ser	Pro 230	Ala	Glu	Gly	Arg	Ala 235	Val	Thr	Asn	Glu	Pro 240
Glu	Glu	Glu	Glu	Leu 245	Ala	Thr	Leu	Ser	Glu 250	Glu	Glu	Ile	Ala	Met 255	Ala
Val	Thr	Ala	Trp 260	Glu	Lys	Gly	Leu	Glu 265	Ser	Leu	Pro	Pro	Leu 270	Arg	Pro
Gln	Gln	Asn 275	Pro	Val	Leu	Pro	Val 280	Ala	Gly	Glu	Arg	Asn 285	Val	Leu	Ile
Thr	Ser 290	Ala	Leu	Pro	Tyr	Val 295	Asn	Asn	Val	Pro	His 300	Leu	Gly	Asn	Ile
Ile 305	Gly	Сув	Val	Leu	Ser 310	Ala	Asp	Val	Phe	Ala 315	Arg	Tyr	Ser	Arg	Leu 320
Arg	Gln	Trp	Asn	Thr 325	Leu	Tyr	Leu	СЛа	Gly 330	Thr	Asp	Glu	Tyr	Gly 335	Thr

-continued

Ala Thr Glu Thr Lys Ala Leu Glu Glu Gly Leu Thr Pro Gln Glu Ile Cys Asp Lys Tyr His Ile Ile His Ala Asp Ile Tyr Arg Trp Phe Asn Ile Ser Phe Asp Ile Phe Gly Arg Thr Thr Thr Pro Gln Gln Thr Lys Ile Thr Gln Asp Ile Phe Gln Gln Leu Leu Lys Arg Gly Phe Val Leu Gln Asp Thr Val Glu Gln Leu Arg Cys Glu His Cys Ala Arg Phe Leu Ala Asp Arg Phe Val Glu Gly Val Cys Pro Phe Cys Gly Tyr Glu Glu Ala Arg Gly Asp Gln Cys Asp Lys Cys Gly Lys Leu Ile Asn Ala Val Glu Leu Lys Lys Pro Gln Cys Lys Val Cys Arg Ser Cys Pro Val Val Gln Ser Ser Gln His Leu Phe Leu Asp Leu Pro Lys Leu Glu Lys Arg Leu Glu Glu Trp Leu Gly Arg Thr Leu Pro Gly Ser Asp Trp Thr Pro Asn Ala Gln Phe Ile Thr Arg Ser Trp Leu Arg Asp Gly Leu Lys Pro 505 Arg Cys Ile Thr Arg Asp Leu Lys Trp Gly Thr Pro Val Pro Leu Glu 520 Gly Phe Glu Asp Lys Val Phe Tyr Val Trp Phe Asp Ala Thr Ile Gly Tyr Leu Ser Ile Thr Ala Asn Tyr Thr Asp Gln Trp Glu Arg Trp Trp 550 555 Lys Asn Pro Glu Gln Ser Thr 565 <210> SEQ ID NO 77 <211> LENGTH: 567 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with C-terminal 6xHis affinity tag <400> SEQUENCE: 77 Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val 40 Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp 105 Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu 120

Ser	Arg 130	Gln	Asn	Cys	Pro	Phe 135	Leu	Ala	Gly	Glu	Thr 140	Glu	Ser	Leu	Ala
Asp 145	Ile	Val	Leu	Trp	Gly 150	Ala	Leu	Tyr	Pro	Leu 155	Leu	Gln	Asp	Pro	Ala 160
Tyr	Leu	Pro	Glu	Glu 165	Leu	Ser	Ala	Leu	His 170	Ser	Trp	Phe	Gln	Thr 175	Leu
Ser	Thr	Gln	Glu 180	Pro	Cys	Gln	Arg	Ala 185	Ala	Glu	Thr	Val	Leu 190	Lys	Gln
Gln	Gly	Val 195	Leu	Ala	Leu	Arg	Pro 200	Tyr	Leu	Gln	Lys	Gln 205	Pro	Gln	Pro
Ser	Pro 210	Ala	Glu	Gly	Arg	Ala 215	Val	Thr	Asn	Glu	Pro 220	Glu	Glu	Glu	Glu
Leu 225	Ala	Thr	Leu	Ser	Glu 230	Glu	Glu	Ile	Ala	Met 235	Ala	Val	Thr	Ala	Trp 240
Glu	Lys	Gly	Leu	Glu 245	Ser	Leu	Pro	Pro	Leu 250	Arg	Pro	Gln	Gln	Asn 255	Pro
Val	Leu	Pro	Val 260	Ala	Gly	Glu	Arg	Asn 265	Val	Leu	Ile	Thr	Ser 270	Ala	Leu
Pro	Tyr	Val 275	Asn	Asn	Val	Pro	His 280	Leu	Gly	Asn	Ile	Ile 285	Gly	CÀa	Val
Leu	Ser 290	Ala	Asp	Val	Phe	Ala 295	Arg	Tyr	Ser	Arg	Leu 300	Arg	Gln	Trp	Asn
Thr 305	Leu	Tyr	Leu	CAa	Gly 310	Thr	Asp	Glu	Tyr	Gly 315	Thr	Ala	Thr	Glu	Thr 320
ГÀЗ	Ala	Leu	Glu	Glu 325	Gly	Leu	Thr	Pro	Gln 330	Glu	Ile	CAa	Asp	Lys 335	Tyr
His	Ile	Ile	His 340	Ala	Asp	Ile	Tyr	Arg 345	Trp	Phe	Asn	Ile	Ser 350	Phe	Asp
Ile	Phe	Gly 355	Arg	Thr	Thr	Thr	Pro 360	Gln	Gln	Thr	Lys	Ile 365	Thr	Gln	Asp
Ile	Phe 370	Gln	Gln	Leu	Leu	Lys 375	Arg	Gly	Phe	Val	Leu 380	Gln	Asp	Thr	Val
Glu 385	Gln	Leu	Arg	Cys	Glu 390	His	Cys	Ala	Arg	Phe 395	Leu	Ala	Asp	Arg	Phe 400
Val	Glu	Gly	Val	Cys 405	Pro	Phe	Cys	Gly	Tyr 410	Glu	Glu	Ala	Arg	Gly 415	Asp
Gln	Cys	_	Lys 420	_	Gly	Lys	Leu	Ile 425		Ala	Val		Leu 430	_	Lys
Pro	Gln	Cys 435	ГÀа	Val	CAa	Arg	Ser 440	Cys	Pro	Val	Val	Gln 445	Ser	Ser	Gln
His	Leu 450	Phe	Leu	Asp	Leu	Pro 455	Lys	Leu	Glu	ГÀз	Arg 460	Leu	Glu	Glu	Trp
Leu 465	Gly	Arg	Thr	Leu	Pro 470	Gly	Ser	Asp	Trp	Thr 475	Pro	Asn	Ala	Gln	Phe 480
Ile	Thr	Arg	Ser	Trp 485	Leu	Arg	Asp	Gly	Leu 490	Lys	Pro	Arg	Сув	Ile 495	Thr
Arg	Asp	Leu	Lys 500	Trp	Gly	Thr	Pro	Val 505	Pro	Leu	Glu	Gly	Phe 510	Glu	Asp
Lys	Val	Phe 515	Tyr	Val	Trp	Phe	Asp 520	Ala	Thr	Ile	Gly	Tyr 525	Leu	Ser	Ile
Thr	Ala 530	Asn	Tyr	Thr	Asp	Gln 535	Trp	Glu	Arg	Trp	Trp 540	ГЛа	Asn	Pro	Glu

-continued

Gln Ser Thr Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser 550 555 Thr His His His His His 565 <210> SEQ ID NO 78 <211> LENGTH: 217 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with N-terminal 6xHis affinity tag <400> SEQUENCE: 78 Met His His His His His Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr 55 Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu 105 Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys 120 Lys Gly Glu Asp Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile 135 Asp His Ser Leu Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu 165 170 Gln Asp Pro Ala Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp 185 Phe Gln Thr Leu Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln Gln Gly Val Leu Ala <210> SEQ ID NO 79 <211> LENGTH: 217 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with C-terminal 6xHis affinity tag <400> SEQUENCE: 79 Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu 10 Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr 25 Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val 40

Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu Gln Asp Pro Ala Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp Phe Gln Thr Leu Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln Gln Gly Val Leu Ala Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr His His His His His 210 <210> SEO ID NO 80 <211> LENGTH: 234 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with N-terminal 6xHis affinity tag <400> SEQUENCE: 80 Met His His His His Gly Lys Pro Ile Pro Asn Pro Leu Leu 10 Gly Leu Asp Ser Thr Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys 25 Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu 170 Gln Asp Pro Ala Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp 185

```
Phe Gln Thr Leu Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr
                          200
Val Leu Lys Gln Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys
                       215
Gln Pro Gln Pro Ser Pro Ala Glu Gly Arg
<210> SEQ ID NO 81
<211> LENGTH: 234
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with
     C-terminal 6xHis affinity tag
<400> SEQUENCE: 81
Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu
Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr 20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}
Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val
Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala
                     55
Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu
                  70
Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu
Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp
                     105
Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu
                 120
Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala
                       135
Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu Gln Asp Pro Ala
Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp Phe Gln Thr Leu
                       170
Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln
Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys Gln Pro Gln Pro
Ser Pro Ala Glu Gly Arg Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly
                     215
Leu Asp Ser Thr His His His His His
<210> SEQ ID NO 82
<211> LENGTH: 241
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with
    N-terminal 6xHis affinity tag
<400> SEQUENCE: 82
Met His His His His His Gly Lys Pro Ile Pro Asn Pro Leu Leu
```

10

-continued

Gly Leu Asp Ser Thr Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys 25 Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val 40 Leu Ile Ser Thr Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile 135 Asp His Ser Leu Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr 150 155 Glu Ser Leu Ala Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu Gln Asp Pro Ala Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp 185 Phe Gln Thr Leu Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr 200 Val Leu Lys Gln Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys 215 Gln Pro Gln Pro Ser Pro Ala Glu Gly Arg Ala Val Thr Asn Glu Pro 230 Glu <210> SEQ ID NO 83 <211> LENGTH: 241 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with C-terminal 6xHis affinity tag <400> SEQUENCE: 83 Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr $20 \\ 25 \\ 30$ Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val 40 Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp 105 Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu 120

-continued

```
Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala
                     135
Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu Gln Asp Pro Ala
                   150
Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp Phe Gln Thr Leu
Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln
                               185
Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys Gln Pro Gln Pro
Ser Pro Ala Glu Gly Arg Ala Val Thr Asn Glu Pro Glu Gly Lys Pro
Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr His His His His His
<210> SEQ ID NO 84
<211> LENGTH: 134
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with
     N-terminal 6xHis affinity tag
<400> SEOUENCE: 84
Met His His His His His Gly Lys Pro Ile Pro Asn Pro Leu Leu
                            10
Gly Leu Asp Ser Thr Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys
                            25
Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val
                          40
Leu Ile Ser Thr Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr
Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe
Ser Thr Ser Ala Ile Cys Arg Gly Ala Glu Cys Pro Ala Gln Leu Val
Pro Asp Thr Glu Tyr Pro Gly Thr Met Ser Ala Ser Cys Arg Asp Cys
Thr Glu Thr Ala Arg Cys Pro Gly Ser Pro Ala Leu Pro Pro Lys Ala
Ala Pro Ala Gln Pro Arg
<210> SEQ ID NO 85
<211> LENGTH: 134
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with
     C-terminal 6xHis affinity tag
<400> SEQUENCE: 85
Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu
                    10
Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr
```

25

-continued

Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala Ile Cys Arg Gly Ala Glu Cys Pro Ala Gln Leu Val Pro Asp Thr Glu Tyr Pro Gly Thr Met Ser Ala Ser Cys Arg Asp Cys Thr Glu Thr Ala Arg Cys Pro Gly Ser Pro Ala Leu Pro Pro Lys Ala Ala Pro Ala Gln Pro Arg Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr His His His His His <210> SEQ ID NO 86 <211> LENGTH: 296 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with N-terminal 6xHis affinity tag <400> SEQUENCE: 86 Met His His His His His Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val 40 Leu Ile Ser Thr Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr 55 Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu Gln Asp Pro Ala Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp 185 Phe Gln Thr Leu Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr 200 Val Leu Lys Gln Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys 215 Gln Pro Gln Pro Ser Pro Ala Glu Gly Arg Ala Val Thr Asn Glu Pro 230 235 Glu Val Ala Cys Gly Trp Arg Lys Glu Cys Ala His His Gln Cys Pro 250

-continued

Pro Leu Arg Gln Gln Cys Pro Pro Pro Trp Glu His His Trp Leu Cys 265 Ala Gln Cys Arg Cys Leu Cys Gln Val Leu Ser Pro Pro Pro Val Glu His Pro Leu Ser Val Trp Asp Arg <210> SEQ ID NO 87 <211> LENGTH: 296 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with C-terminal 6xHis affinity tag <400> SEQUENCE: 87 Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$ Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala 55 Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu 70 Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp 105 Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu 120 Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala 135 Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu Gln Asp Pro Ala Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp Phe Gln Thr Leu 170 Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys Gln Pro Gln Pro Ser Pro Ala Glu Gly Arg Ala Val Thr Asn Glu Pro Glu Val Ala Cys Gly Trp Arg Lys Glu Cys Ala His His Gln Cys Pro Pro Leu Arg Gln Gln Cys Pro Pro Pro Trp Glu His His Trp Leu Cys Ala Gln Cys Arg 250 Cys Leu Cys Gln Val Leu Ser Pro Pro Pro Val Glu His Pro Leu Ser 265 Val Trp Asp Arg Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr His His His His His 290

-continued

```
<210> SEQ ID NO 88
<211> LENGTH: 293
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with
     N-terminal 6xHis affinity tag
<400> SEQUENCE: 88
Met His His His His His Gly Lys Pro Ile Pro Asn Pro Leu Leu
                       10
Gly Leu Asp Ser Thr Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys
Leu Pro Val Leu Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val
Leu Ile Ser Thr Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr
Arg Pro Lys Val Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe
Ser Thr Ser Ala Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu
                               90
Gln Asp Asp Leu Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu
Gln Pro Ala Leu Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys
                          120
Lys Gly Glu Asp Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile
                     135
Asp His Ser Leu Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr
                  150
                                      155
Glu Ser Leu Ala Asp Ile Val Leu Trp Gly Ala Leu Tyr Pro Leu Leu
Gln Asp Pro Ala Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp
                    185
Phe Gln Thr Leu Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr
                        200
Val Leu Lys Gln Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys
                      215
Gln Pro Gln Pro Ser Pro Ala Glu Gly Arg Ala Val Thr Asn Glu Pro
Glu Glu Glu Glu Leu Ala Thr Leu Ser Glu Glu Glu Ile Ala Met Ala
                       250
Val Thr Ala Trp Glu Lys Gly Leu Glu Ser Leu Pro Pro Leu Arg Pro
                     265
Gln Gln Asn Pro Val Trp Thr Cys Ile Ser Ser Trp Pro Lys Thr Met
Phe Leu Ser Ile Ala
  290
<210> SEQ ID NO 89
<211> LENGTH: 293
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with
     C-terminal 6xHis affinity tag
<400> SEQUENCE: 89
```

Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu

1				5					10					15		
Ala	Ala	Ala	Gly 20	Arg	Ala	Arg	Gly	Arg 25	Ala	Glu	Val	Leu	Ile 30	Ser	Thr	
Val	Gly	Pro 35	Glu	Asp	CAa	Val	Val 40	Pro	Phe	Leu	Thr	Arg 45	Pro	Lys	Val	
Pro	Val 50	Leu	Gln	Leu	Asp	Ser 55	Gly	Asn	Tyr	Leu	Phe 60	Ser	Thr	Ser	Ala	
Ile 65	Cys	Arg	Tyr	Phe	Phe 70	Leu	Leu	Ser	Gly	Trp 75	Glu	Gln	Asp	Asp	Leu 80	
Thr	Asn	Gln	Trp	Leu 85	Glu	Trp	Glu	Ala	Thr 90	Glu	Leu	Gln	Pro	Ala 95	Leu	
Ser	Ala	Ala	Leu 100	Tyr	Tyr	Leu	Val	Val 105	Gln	Gly	Lys	Lys	Gly 110	Glu	Asp	
Val	Leu	Gly 115	Ser	Val	Arg	Arg	Ala 120	Leu	Thr	His	Ile	Asp 125	His	Ser	Leu	
Ser	Arg 130	Gln	Asn	Cys	Pro	Phe 135	Leu	Ala	Gly	Glu	Thr 140	Glu	Ser	Leu	Ala	
Asp 145	Ile	Val	Leu	Trp	Gly 150	Ala	Leu	Tyr	Pro	Leu 155	Leu	Gln	Asp	Pro	Ala 160	
Tyr	Leu	Pro	Glu	Glu 165	Leu	Ser	Ala	Leu	His 170	Ser	Trp	Phe	Gln	Thr 175	Leu	
Ser	Thr	Gln	Glu 180	Pro	Cys	Gln	Arg	Ala 185	Ala	Glu	Thr	Val	Leu 190	Lys	Gln	
Gln	Gly	Val 195	Leu	Ala	Leu	Arg	Pro 200	Tyr	Leu	Gln	Lys	Gln 205	Pro	Gln	Pro	
Ser	Pro 210	Ala	Glu	Gly	Arg	Ala 215	Val	Thr	Asn	Glu	Pro 220	Glu	Glu	Glu	Glu	
Leu 225	Ala	Thr	Leu	Ser	Glu 230	Glu	Glu	Ile	Ala	Met 235	Ala	Val	Thr	Ala	Trp 240	
Glu	Lys	Gly	Leu	Glu 245	Ser	Leu	Pro	Pro	Leu 250	Arg	Pro	Gln	Gln	Asn 255	Pro	
Val	Trp	Thr	Сув 260	Ile	Ser	Ser	Trp	Pro 265	Lys	Thr	Met	Phe	Leu 270	Ser	Ile	
Ala	Gly	Lys 275	Pro	Ile	Pro	Asn	Pro 280	Leu	Leu	Gly	Leu	Asp 285	Ser	Thr	His	
His	His 290	His	His	His												
<211 <212 <213 <220 <223	po	ENGTH PE: RGANI EATUF THER	H: 70 DNA ISM: RE: INFO	D2 Art: DRMA: otide	rion		_		nized	l Met	chion	nyl t	:RNA	Synt	thetase	
< 400)> SE	EQUEN	ICE :	90												
															ggccgc gttccg	60 120
															ttagc	180
															etgacc	240
aato	caato	ggc t	ggag	gtggg	ga go	gccad	ccgaç	g cts	gcago	ccgg	cact	gtct	gc a	agcgt	tgtac	300
tato	ctggt	.cg t	gcaa	aggta	aa ga	aaagg	gcgaa	a gat	gtgo	ctgg	gtaç	gcgt	eeg t	cgtg	geettg	360

acgeatateg accaeageet gteeegteaa aattgteegt teetggetgg tgaaacegag	420
agettggegg atattgttet gtggggegeg etgtateete tgetgeagga teeageetat	480
ctgccggaag agttgtctgc cctgcacagc tggtttcaaa cgctgagcac ccaggaaccg	540
tgccagcgtg ccgcagaaac tgttctgaaa cagcaaggtg ttctggcact gcgtccgtac	600
ctgcagaaac agcctcagcc gagcccagct gagggtcgtg cggtgacgaa cgagccggaa	660
gaagaagagc tggcgacgct gagcgaagag taatgactcg ag	702
<210> SEQ ID NO 91 <211> LENGTH: 798 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Codon optimized Methionyl tRNA Synthetase polynucleotide	
<400> SEQUENCE: 91	
egettatteg tgteegaegg egteeeagge tgettaeeag tgttggegge tgeaggtegt	60
gegegeggte gegeegaggt cetgattage accgtgggte eggaagattg tgtggteeet	120
ttcctgaccc gtccgaaagt tccggtcctg cagctggatt ccggcaatta cttgtttagc	180
accagogoaa tttgtogota ottotttotg otgagoggtt gggagoaaga tgacotgaog	240
aaccagtggc tggagtggga ggccacggag ctgcagccgg cgctgagcgc agccctgtat	300
tacttggttg tgcagggtaa gaaaggcgag gacgtgctgg gcagcgttcg tcgtgcgctg	360
acceacateg accattetet gageegteaa aattgeeegt ttetggeggg tgagaetgag	420
agectggeag acategtget gtggggegeg ttgtateeae tgetgeaaga teeggettae	480
ctgccggaag agctgagcgc cctgcactcg tggttccaaa cgctgtctac tcaggaaccg	540
tgccaacgtg ctgccgaaac cgttctgaag caacagggtg ttctggcgct gcgcccgtat	600
ttgcagaaac agccacaacc gagcccggca gaaggccgtg cggtcaccaa cgagccggaa	660
gaagaagagc tggcgaccct gtctgaagaa gaaatcgcga tggcagttac ggcgtgggag	720
aagggtetgg agageetgee geegttgegt ceacageaaa acceggtget geeggtegea	780
ggtgagtaat gactcgag	798
<210> SEQ ID NO 92 <211> LENGTH: 354 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Codon optimized Methionyl tRNA Synthetase polynucleotide	
<400> SEQUENCE: 92	
agattattcg ttagcgacgg cgtcccaggc tgcctcccag tactggcggc agcgggccgc	60
gcccgtggcc gcgccgaggt gttgatttct acggttggcc cagaagattg cgttgtcccg	120
tttctgacgc gtccgaaggt gcctgtcctg cagctggaca gcggtaacta cctgttcagc	180
acctccgcta tctgccgtta tagcatgagc ggtctgatgc cgctgctggc aatctgtccg	240
agccaaccga ccacccaaac gtcgggtcgt gacggtggtc gcacccagtc caagtggact	300
tgtattagca gctggccgaa aaccatgttc ctgagcatcg cgtaatgact cgag	354
<210> SEQ ID NO 93	

<210> SEQ ID NO 93 <211> LENGTH: 1290 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

-continued

<220> FEATURE: <223> OTHER INFORMATION: Codon optimized Methionyl tRNA Synthetase polynucleotide <400> SEQUENCE: 93 agattatteg teagegaegg egteceagge tgeeteceag tgetggegge ageaggeege 60 gctcgcggcc gtgcggaggt gctgattagc accgttggcc cggaggattg cgtggtcccg 120 180 ttcctgaccc gtccgaaagt gccggtgctg cagctggaca gcggtaacta cctgtttagc acgtccgcga tctgtcgcta tttcttcctg ctgagcggtt gggagcaaga cgacctgacc 240 aatcagtggc tggagtggga ggcgaccgag ctgcaaccgg cgctgagcgc agctctgtac 300 tatttggttg tgcaaggtaa gaaaggtgag gatgtgctgg gcagcgtccg tcgtgccttg acceatateg accatageet gageegeeag aattgteegt ttetggeggg tgaaacegag 480 tecetageag atateataet atagaataea etataeeage taetaeaga eeeagaatae ttgccggaag aactgtccgc tctgcactcc tggttccaaa ccttgagcac gcaagagccg 540 tqccaacqtq ccqcqqaqac tqtcctqaaq caacaaqqtq ttctqqcact qcqtccqtac 600 ctgcaqaaac agccgcagcc gagcccggcc gagggtcgtg ctgttaccaa tgagcctgaa 660 720 qaaqaaqaqc tqqcqacqct qaqcqaaqaa qaaattqcaa tqqccqtqac tqcqtqqqaa aaqqqtctqq aatctctqcc qccactqcqc ccqcaacaaa accctqttct qccaqtcqcc 780 qqtqaqcqta acqttctqat taccaqcqca ctqccqtatq tqaacaacqt tccqcacctq 840 ggcaacatta tcggttgtgt cctgagcgcc gatgttttcg cacgctatag ccgtctgcgt 900 960 caqtqqaata cqctqtattt qtqcqqtact qacqaqtacq qtacqqctac cqaaaccaaa gcgctggaag agggtctgac gccgcaggag atctgcgata agtatcacat cattcatgcg 1020 gatatttacc gctggttcaa tatcagcttt gacattttcg gccgtacgac gacccctcag 1080 cagaccaaga gcctgagcgt caaatcggcc gaccacgcat tgtggtgtag ccgtgcatct 1140 acctgctttt ggacctgcct gtcgtggcgc agcgattggc gttctggttg gggcggtcat 1200 tgtctggcgg ttacgggcca cccaatgccg agcttgagcc cggtcttggg ctttggcatg 1260 gcgagctctc acgcggctta atgactcgag 1290 <210> SEQ ID NO 94 <211> LENGTH: 1650 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Codon optimized Methionyl tRNA Synthetase polynucleotide <400> SEQUENCE: 94 agattattcg tcagcgacgg cgtcccaggc tgcctcccag tgctggccgc ggcaggccgt 60 gegegeggte gegeagaagt tttgateage accgteggte eggaggaetg egtggtteeg 120 ttcctgaccc gcccgaaagt cccagtgttg cagctggata gcggtaacta cctgtttagc 180 acgtccgcga tctgtcgtta tttcttcttg ctgagcggtt gggagcagga cgacctgacc 240 aatcaatggt tggagtggga ggcgaccgag ctgcagccgg ccctgtctgc ggcattgtac 300 tacctggttg tccagggtaa gaaaggcgaa gatgtgctgg gcagcgtccg ccgtgcgctg 360 acceacateg ateactetet gtegegeeaa aattgeeegt teetggeggg tgaaaeggag agectggeag acattgtget gtggggtget ttgtateege tgetgeaaga eeeggeetat 480

ctgccggaag aactgagcgc tctgcacagc tggtttcaaa cgctgagcac gcaggaaccg

540

-continued	
tgtcagcgtg cggcggagac tgttctgaag caacagggtg ttctggcgct gcgtccgtac	600
ctgcaaaagc aaccgcagcc gagccctgcg gagggtcgtg cagttacgaa cgaaccggaa	660
gaagaagage tggcgaccct gagcgaagaa gagattgcaa tggcagtcac ggcgtgggaa	720
aagggtetgg agtegttgee geegetgege ceacageaaa ateeggttet geeggteget	780
ggcgagcgta acgtgctgat taccagcgcc ctgccgtacg tgaacaacgt gccgcatctg	840
ggtaacatca ttggctgcgt cctgagcgcg gatgtctttg cgcgttatag ccgcctgcgt	900
caatggaata coctgtacct gtgcggtacc gacgagtatg gtaccgctac cgaaactaag	960
gcattggaag agggcctgac cccgcaggag atttgcgata aataccatat cattcatgcc	1020
gacatetace gttggtttaa cateagette gatatetttg geegeaegae caegeegeaa	1080
caaaccaaaa ttacccaaga tattttccaa cagctgctga agcgcggctt tgttctgcag	1140
gacaccgttg agcagetgeg ttgegageae tgegeaegtt ttetggeega eegtttegtg	1200
gagggtgtct gtccgttctg cggttatgaa gaagcccgtg gtgaccagtg tgacaaatgt	1260
ggcaaactga tcaatgctgt cgaactgaag aaacctcagt gcaaagtgtg tcgtagctgc	1320
cctgttgtgc aaagcagcca acacctgttc ctggatctgc caaagctgga gaagcgtctg	1380
gaagagtggc tgggccgtac cctgccgggc agcgattgga ccccgaatgc tcagttcatt	1440
acgcgctcct ggctgcgcga tggtctgaaa ccgcgttgta tcactcgtga cctgaaatgg	1500
ggtacgccgg ttccactgga gggctttgag gataaagtgt tctatgtgtg gtttgatgcg	1560
actattggtt acttgtccat caccgcgaat tacacggacc agtgggagcg ttggtggaag	1620
aacceggage agtecaceta atgactegag	1650
<210> SEQ ID NO 95 <211> LENGTH: 600 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Codon optimized Methionyl tRNA Synthetase polynucleotide	
<400> SEQUENCE: 95	
agattatteg teagegaegg egteceagge tgeeteecag tgetggegge egegggeegt	60
gcacgtggcc gtgcagaggt gttgattagc acggttggtc cggaagattg cgtcgttccg	120
tttctgacgc gtccgaaagt cccggtgctg caactggata gcggtaacta cctgttcagc	180
accagegeaa tetgtegeta tttetttetg etgagegget gggageaaga egaeetgaee	240
aatcaatggt tggagtggga ggcgaccgaa ctgcaaccgg ccctgagcgc tgcgctgtat	300
tacttggtgg tgcagggtaa gaaaggtgag gatgtcctgg gttccgttcg tcgcgcgttg	360
acceacateg ateacageet gtegegteaa aactgteegt teetggeagg tgaaacegag	420
tetetggeeg acattgteet gtggggegeg etgtateege tgetgeagga eeeggeatae	480
ctgcctgaag aactgagcgc gctgcattct tggtttcaga cgctgagcac ccaggagcca	540
tgccagcgcg cggctgaaac tgttctgaag caacagggtg tgttggccta atgactcgag	600
<210> SEQ ID NO 96 <211> LENGTH: 651	

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Codon optimized Methionyl tRNA Synthetase
 polynucleotide

agattattcg	ttagcgacgg	cgtcccaggc	tgcctcccag	tactggcagc	ggccggtcgt	60
gegegeggee	gtgcggaggt	gttgatcagc	accgttggcc	cggaggattg	cgtggtccct	120
ttcctgactc	gtccgaaagt	cccggtcctg	cagttggact	cgggcaatta	cctgtttagc	180
accagegeca	tttgccgtta	cttctttctg	ctgagcggtt	gggagcaaga	cgatctgacg	240
aaccaatggc	tggagtggga	agcaaccgag	ctgcaaccgg	ctctgtccgc	tgcgctgtac	300
tatctggtcg	ttcagggtaa	gaagggtgag	gacgttctgg	gctccgttcg	tegtgegetg	360
acgcatatcg	atcacagcct	gagccgtcaa	aactgtccgt	teetggeggg	tgaaacggaa	420
agcctggccg	acattgttct	gtggggtgcg	ttgtacccgt	tgctgcagga	tccggcatat	480
ttgccggaag	aactgagcgc	actgcactcg	tggtttcaga	ccctgagcac	gcaagagccg	540
tgtcaacgcg	ctgcggaaac	cgtgctgaaa	cagcagggtg	tgctggcact	gcgcccttat	600
ctgcagaaac	agccgcaacc	atctccggcg	gagggccgct	aatgactcga	g	651
<220> FEATU <223> OTHER	TH: 672 DNA DISM: Artifi DRE: DISMORMATIC DUCLEOTIDE	icial Sequer DN: Codon op		:hionyl tRN#	A Synthetase	
agattattcg	ttagcgacgg	cgtcccaggc	tgccttccag	tattggcggc	ggcgggtcgc	60
gegegtggee	gtgctgaagt	gctgattagc	accgtgggtc	ctgaggactg	tgttgtgccg	120
ttcttgaccc	gtccgaaagt	tccggtgttg	cagctggata	gcggcaatta	cctgtttagc	180
acctccgcaa	tctgccgtta	cttcttcctg	ctgtctggtt	gggagcaaga	tgacttgacc	240
aatcagtggc	tggaatggga	ggcaacggag	ctgcaacctg	ccctgagcgc	agegetgtat	300
tatctggtcg	tgcagggtaa	gaaaggcgag	gatgttctgg	gtagcgtccg	tegegeeetg	360
acgcacatcg	accattcgct	gtcccgccaa	aactgtccgt	ttctggcggg	cgagactgag	420
agcctggcag	acattgtcct	gtggggtgcc	ctgtacccgt	tgctgcagga	teeggegtat	480
ctgccggaag	aactgagcgc	gctgcactct	tggtttcaga	ccctgagcac	ccaagaacca	540
tgccagcgtg	ctgctgaaac	ggttctgaag	caacaaggcg	tcctggcgct	gcgtccgtac	600
ctgcagaaac	agccgcaacc	gagcccggcc	gagggtcgcg	cagttacgaa	cgaaccggag	660
taatgactcg	ag					672
<220> FEATU <223> OTHER	TH: 351 DNA NISM: Artifi NRE:	icial Sequer DN: Codon op		:hionyl tRN#	A Synthetase	
<400> SEQUE	ENCE: 98					
agattattcg	tcagcgacgg	cgtcccaggc	tgcctcccag	tactggcggc	tgccggtcgc	60
gcacgtggtc	gcgcagaagt	tctgatttcc	accgtcggcc	cagaggattg	tgtcgtgccg	120
ttcctgaccc	gtcctaaagt	gccggtgctg	cagctggaca	gcggcaacta	cttgtttagc	180
acctctgcga	tetgeegtgg	cgcggagtgc	ccggcacaac	tggttccgga	caccgagtat	240
ccgggtacta	tgtcggcgag	ctgccgtgat	tgtacggaaa	cggcccgttg	tccgggtagc	300

				-0011011	iuea	
ccggctctgc	cgcctaaggc	ggcgccggca	cageegeget	aatgactcga	g	351
<220> FEATURE CONTROL	TH: 837 : DNA NISM: Artif: URE:			thionyl tRNA	A Synthetase	
<400> SEQUI	ENCE: 99					
agattattcg	tcagcgacgg	cgtcccaggc	tgcctcccag	tactggccgc	ggcgggtcgt	60
gcacgtggcc	gegetgaggt	tttgatctcc	accgtgggtc	ctgaggattg	tgtcgtgcct	120
tttctgacgc	gcccgaaggt	teeggttetg	cagttggata	gcggcaatta	tttgttcagc	180
accagcgcaa	tttgccgtta	tttcttcttg	ctgtctggtt	gggagcagga	cgatctgacc	240
aatcagtggc	tggagtggga	agccaccgag	ttgcaaccgg	ccctgagcgc	tgcgctgtat	300
tacctggtgg	tccaaggtaa	gaaaggtgag	gacgttctgg	gtagegteeg	tegtgcactg	360
acgcatatcg	accacagcct	gtctcgtcaa	aactgtccgt	ttetggeggg	cgaaacggag	420
agcctggcag	acattgttct	gtggggcgcg	ctgtacccgc	tgctgcaaga	cccggcgtac	480
ctgccggaag	aactgtccgc	cctgcatagc	tggtttcaga	ccctgagcac	gcaggaaccg	540
tgccagcgcg	cggcagagac	tgtgctgaag	caacaaggtg	teetggeget	gcgcccttac	600
ctgcagaaac	aaccgcagcc	gagcccggcc	gagggtcgtg	ctgtgaccaa	cgaaccagaa	660
gttgcgtgcg	gctggcgtaa	agaatgcgcg	caccatcaat	gcccgccgct	gcgtcagcaa	720
tgccctccgc	cgtgggagca	ccactggctg	tgtgctcagt	geegetgtet	gtgtcaggtc	780
ctgtcgccgc	cgccggtcga	gcacccgttg	agcgtgtggg	atcgttaatg	actcgag	837
<220> FEATU	TH: 828 : DNA NISM: Artif: URE:			chionyl tRNA	A Synthetase	
<400> SEQUI	ENCE: 100					
agattattcg	tcagcgacgg	cgtcccaggc	tgcctcccag	tactggcagc	cgccggtcgc	60
gcgcgtggtc	gtgcggaggt	tctgattagc	accgtgggcc	cggaggactg	tgtggttccg	120
ttcctgacgc	gtccgaaagt	tcctgtgctg	cagctggata	gcggcaacta	tttgtttagc	180
accagcgcga	tttgccgtta	cttctttctg	ctgtccggtt	gggagcaaga	cgatttgacg	240
aatcaatggc	tggagtggga	agcaactgag	ctgcaaccag	cgctgtcggc	ggcgctgtac	300
tatttggtcg	ttcagggtaa	gaaaggtgag	gatgtcctgg	gtagegteeg	ccgtgcactg	360
actcacatcg	accacagett	gtctcgtcag	aactgcccgt	teetggeagg	tgaaacggag	420
tecetggeeg	acatcgtgct	gtggggcgcg	ctgtacccgt	tgctgcagga	teeggegtae	480
ctgccggaag	agctgagcgc	cctgcatagc	tggtttcaga	ccctgagcac	ccaagagccg	540
tgccaacgtg	cagcagaaac	ggtcctgaag	cagcaaggcg	ttetggeget	gegeeegtat	600
ctgcaaaagc	agccgcagcc	gtccccagcc	gaaggccgcg	ctgtcaccaa	tgagccggaa	660
gaagaagagc	tggctacgct	gagcgaagaa	gaaattgcta	tggccgtgac	cgcgtgggag	720
aaaggtctgg	agagettgee	gccgctgcgt	cctcaacaga	acccggtttg	gacctgtatc	780
tctagctggc	cgaaaaccat	gttcctgagc	atcgcgtaat	gactcgag		828

<210> SEQ ID NO 101 <211> LENGTH: 707 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 101	
Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln	Lys Gln Pro Gln Pro Ser
1 5 10	15
Pro Ala Glu Gly Arg Ala Val Thr Asn Glu	Pro Glu Glu Glu Leu
20 25	30
Ala Thr Leu Ser Glu Glu Glu Ile Ala Met	Ala Val Thr Ala Trp Glu
35 40	45
Lys Gly Leu Glu Ser Leu Pro Pro Leu Arg 50 55	Pro Gln Gln Asn Pro Val
Leu Pro Val Ala Gly Glu Arg Asn Val Leu	Ile Thr Ser Ala Leu Pro
65 70	75 80
Tyr Val Asn Asn Val Pro His Leu Gly Asn 85 90	Ile Ile Gly Cys Val Leu 95
Ser Ala Asp Val Phe Ala Arg Tyr Ser Arg 100 105	Leu Arg Gln Trp Asn Thr 110
Leu Tyr Leu Cys Gly Thr Asp Glu Tyr Gly 115 120	Thr Ala Thr Glu Thr Lys 125
Ala Leu Glu Glu Gly Leu Thr Pro Gln Glu	Ile Cys Asp Lys Tyr His
130 135	140
Ile Ile His Ala Asp Ile Tyr Arg Trp Phe	Asn Ile Ser Phe Asp Ile
145 150	155 160
Phe Gly Arg Thr Thr Thr Pro Gln Gln Thr	Lys Ile Thr Gln Asp Ile
165 170	175
Phe Gln Gln Leu Leu Lys Arg Gly Phe Val	Leu Gln Asp Thr Val Glu 190
Gln Leu Arg Cys Glu His Cys Ala Arg Phe	Leu Ala Asp Arg Phe Val
195 200	205
Glu Gly Val Cys Pro Phe Cys Gly Tyr Glu	Glu Ala Arg Gly Asp Gln
210 215	220
Cys Asp Lys Cys Gly Lys Leu Ile Asn Ala	Val Glu Leu Lys Lys Pro
225 230	235 240
Gln Cys Lys Val Cys Arg Ser Cys Pro Val 245 250	Val Gln Ser Ser Gln His 255
Leu Phe Leu Asp Leu Pro Lys Leu Glu Lys 260 265	Arg Leu Glu Glu Trp Leu 270
Gly Arg Thr Leu Pro Gly Ser Asp Trp Thr 275 280	Pro Asn Ala Gln Phe Ile 285
Thr Arg Ser Trp Leu Arg Asp Gly Leu Lys 290 295	Pro Arg Cys Ile Thr Arg 300
Asp Leu Lys Trp Gly Thr Pro Val Pro Leu	Glu Gly Phe Glu Asp Lys
305 310	315
Val Phe Tyr Val Trp Phe Asp Ala Thr Ile	Gly Tyr Leu Ser Ile Thr
325 330	335
Ala Asn Tyr Thr Asp Gln Trp Glu Arg Trp 340 345	Trp Lys Asn Pro Glu Gln 350
Val Asp Leu Tyr Gln Phe Met Ala Lys Asp	Asn Val Pro Phe His Ser
355 360	365
Leu Val Phe Pro Cys Ser Ala Leu Gly Ala	Glu Asp Asn Tyr Thr Leu

												COII	CIII	uea		
	370					375					380					
Val 385		His	Leu	Ile	Ala 390		Glu	Tyr	Leu	Asn 395	_	Glu	Asp	Gly	Lys 400	
Phe	Ser	Lys	Ser	Arg 405	Gly	Val	Gly	Val	Phe 410		Asp	Met	Ala	Gln 415	Asp	
Thr	Gly	Ile	Pro 420	Ala	Asp	Ile	Trp	Arg 425	Phe	Tyr	Leu	Leu	Tyr 430	Ile	Arg	
Pro	Glu	Gly 435		Asp	Ser	Ala	Phe 440	Ser	Trp	Thr	Asp	Leu 445	Leu	Leu	ГЛа	
Asn	Asn 450	Ser	Glu	Leu	Leu	Asn 455	Asn	Leu	Gly	Asn	Phe 460	Ile	Asn	Arg	Ala	
Gly 465	Met	Phe	Val	Ser	Lys 470	Phe	Phe	Gly	Gly	Tyr 475	Val	Pro	Glu	Met	Val 480	
Leu	Thr	Pro	Asp	Asp 485	Gln	Arg	Leu		Ala 490	His	Val	Thr	Leu	Glu 495	Leu	
Gln	His	Tyr	His 500		Leu	Leu	Glu	Lуз 505	Val	Arg	Ile	Arg	Asp 510	Ala	Leu	
Arg	Ser	Ile 515	Leu	Thr	Ile	Ser	Arg 520	His	Gly	Asn	Gln	Tyr 525	Ile	Gln	Val	
Asn	Glu 530	Pro	Trp	Lys	Arg	Ile 535	Lys	Gly	Ser	Glu	Ala 540	Asp	Arg	Gln	Arg	
Ala 545	Gly	Thr	Val	Thr	Gly 550	Leu	Ala	Val	Asn	Ile 555	Ala	Ala	Leu	Leu	Ser 560	
Val	Met	Leu	Gln	Pro 565	Tyr	Met	Pro	Thr	Val 570	Ser	Ala	Thr	Ile	Gln 575	Ala	
Gln	Leu	Gln	Leu 580	Pro	Pro	Pro	Ala	Сув 585	Ser	Ile	Leu	Leu	Thr 590	Asn	Phe	
Leu	Cys	Thr 595	Leu	Pro	Ala	Gly	His 600	Gln	Ile	Gly	Thr	Val 605	Ser	Pro	Leu	
Phe	Gln 610		Leu	Glu	Asn	Asp 615	Gln	Ile	Glu	Ser	Leu 620	Arg	Gln	Arg	Phe	
Gly 625	Gly	Gly	Gln	Ala	Lys 630	Thr	Ser	Pro	ГЛа	Pro 635	Ala	Val	Val	Glu	Thr 640	
Val	Thr	Thr	Ala	Lys 645	Pro	Gln	Gln	Ile	Gln 650	Ala	Leu	Met	Asp	Glu 655	Val	
Thr	Lys		Gly 660		Ile			Glu 665		Lys	Ala		Lys 670		Asp	
rys	Asn	Glu 675	Val	Ala	Ala	Glu	Val 680	Ala	Lys	Leu	Leu	Asp 685	Leu	Lys	Lys	
Gln	Leu 690	Ala	Val	Ala	Glu	Gly 695	Lys	Pro	Pro	Glu	Ala 700	Pro	Lys	Gly	Lys	
Lys 705	Lys	Lys														
<211 <212	0> SI L> LI 2> TY 3> OF	ENGTI	H: 23	124	o saj	piens	3									
< 400)> SI	EQUEI	ICE :	102												
ggtg	gteet	gg (etet	ccgg	ec ti	cacct	ccaa	a aaq	gcago	cccc	agc	ccag	ecc (eget	gaggga	60
aggg	gctgt	ca d	ccaat	tgag	cc to	gagga	agga	g ga	gctg	gcta	ccci	tatci	tga 🤉	ggag	gagatt	120
gcta	atggo	ctg t	tacı	tgct	g g	gagaa	aggg	c cta	agaaa	agtt	tgc	cccc	get (gegge	cccag	180

cagaatccag	tgttgcctgt	ggctggagaa	aggaatgtgc	tcatcaccag	tgccctccct	240	
tacgtcaaca	atgtccccca	ccttgggaac	atcattggtt	gtgtgctcag	tgccgatgtc	300	
tttgccaggt	actctcgcct	ccgccagtgg	aacaccctct	atctgtgtgg	gacagatgag	360	
tatggtacag	caacagagac	caaggctctg	gaggaggac	taacccccca	ggagatctgc	420	
gacaagtacc	acatcatcca	tgctgacatc	taccgctggt	ttaacatttc	gtttgatatt	480	
tttggtcgca	ccaccactcc	acagcagacc	aaaatcaccc	aggacatttt	ccagcagttg	540	
ctgaaacgag	gttttgtgct	gcaagatact	gtggagcaac	tgcgatgtga	gcactgtgct	600	
cgcttcctgg	ctgaccgctt	cgtggagggc	gtgtgtccct	tctgtggcta	tgaggaggct	660	
cggggtgacc	agtgtgacaa	gtgtggcaag	ctcatcaatg	ctgtcgagct	taagaagcct	720	
cagtgtaaag	tetgeegate	atgccctgtg	gtgcagtcga	gccagcacct	gtttctggac	780	
ctgcctaagc	tggagaagcg	actggaggag	tggttgggga	ggacattgcc	tggcagtgac	840	
tggacaccca	atgcccagtt	tatcacccgt	tcttggcttc	gggatggcct	caagccacgc	900	
tgcataaccc	gagacctcaa	atggggaacc	cctgtaccct	tagaaggttt	tgaagacaag	960	
gtattctatg	tctggtttga	tgccactatt	ggctatctgt	ccatcacagc	caactacaca	1020	
gaccagtggg	agagatggtg	gaagaaccca	gagcaagtgg	acctgtatca	gttcatggcc	1080	
aaagacaatg	ttcctttcca	tagcttagtc	tttccttgct	cagccctagg	agctgaggat	1140	
aactatacct	tggtcagcca	cctcattgct	acagagtacc	tgaactatga	ggatgggaaa	1200	
ttctctaaga	gccgcggtgt	gggagtgttt	ggggacatgg	cccaggacac	ggggatccct	1260	
gctgacatct	ggcgcttcta	tctgctgtac	attcggcctg	agggccagga	cagtgctttc	1320	
tcctggacgg	acctgctgct	gaagaataat	tctgagctgc	ttaacaacct	gggcaacttc	1380	
atcaacagag	ctgggatgtt	tgtgtctaag	ttctttgggg	gctatgtgcc	tgagatggtg	1440	
ctcacccctg	atgatcagcg	cctgctggcc	catgtcaccc	tggagctcca	gcactatcac	1500	
cagctacttg	agaaggttcg	gatccgggat	gccttgcgca	gtatecteae	catatctcga	1560	
catggcaacc	aatatattca	ggtgaatgag	ccctggaagc	ggattaaagg	cagtgaggct	1620	
gacaggcaac	gggcaggaac	agtgactggc	ttggcagtga	atatagctgc	cttgctctct	1680	
gtcatgcttc	agccttacat	gcccacggtt	agtgccacaa	tccaggccca	gctgcagctc	1740	
ccacctccag	cctgcagtat	cctgctgaca	aacttcctgt	gtaccttacc	agcaggacac	1800	
cagattggca	cagtcagtcc	cttgttccaa	aaattggaaa	atgaccagat	tgaaagttta	1860	
aggcagcgct	ttggaggggg	ccaggcaaaa	acgtccccga	agccagcagt	tgtagagact	1920	
gttacaacag	ccaagccaca	gcagatacaa	gcgctgatgg	atgaagtgac	aaaacaagga	1980	
aacattgtcc	gagaactgaa	agcacaaaag	gcagacaaga	acgaggttgc	tgcggaggtg	2040	
gcgaaactct	tggatctaaa	gaaacagttg	gctgtagctg	aggggaaacc	ccctgaagcc	2100	
cctaaaggca	agaagaaaaa	gtaa				2124	

```
<210> SEQ ID NO 103
```

<211> LENGTH: 28
<212> TYPE: PRT
<213> ORGANISM: Mus musculus

<400> SEQUENCE: 103

Thr Val Ser Asn Glu Leu Glu Glu Glu Glu Leu Ala Thr Leu Ser Glu 10

```
<210> SEQ ID NO 104
<211> LENGTH: 22
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 104
Gly Leu Glu Ser Leu Pro Pro Leu Lys Leu Gln Gln His Pro Val Leu
Pro Val Pro Gly Glu Arg
<210> SEQ ID NO 105
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 105
Asn Val Leu Ile Thr Ser Ala Leu Pro Tyr 1 5 10
<210> SEQ ID NO 106
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 106
Val Asn Asn Val Pro His Leu Gly Asn Ile Ile Gly Cys Val Leu Ser
1 5
                     10
Ala Asp Val Phe Ala Arg
          20
<210> SEQ ID NO 107
<211> LENGTH: 3
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 107
Tyr Cys Arg
<210> SEQ ID NO 108
<211> LENGTH: 22
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 108
Leu Arg Gln Trp Asn Thr Leu Tyr Leu Cys Gly Thr Asp Glu Tyr Gly
Thr Ala Thr Glu Thr Lys
        20
<210> SEQ ID NO 109
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 109
Ala Met Glu Glu Gly Leu Thr Pro Arg
1 5
<210> SEQ ID NO 110
<211> LENGTH: 15
```

```
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 110
Glu Ile Cys Asp Lys Tyr His Ala Ile His Ala Asp Ile Tyr Arg
<210> SEQ ID NO 111
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 111
Trp Phe Gly Ile Ser Phe Asp Thr Phe Gly Arg
<210> SEQ ID NO 112
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 112
Thr Thr Pro Gln Gln Thr Lys
<210> SEQ ID NO 113
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 113
Ile Thr Gln Asp Ile Phe Gln Arg
<210> SEQ ID NO 114
<211> LENGTH: 27
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 114
Leu Leu Thr Arg Gly Phe Val Leu Arg Asp Thr Val Glu Gln Leu Arg
Cys Glu Arg Cys Ala Arg Phe Leu Ala Asp Arg
<210> SEQ ID NO 115
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 115
Phe Val Glu Gly Val Cys Pro Phe Cys Gly Tyr Glu Glu Ala Arg
<210> SEQ ID NO 116
<211> LENGTH: 31
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 116
Gly Asp Gln Cys Asp Arg Cys Gly Lys Leu Ile Asn Ala Ile Glu Leu
                                   10
Lys Lys Pro Gln Cys Lys Ile Cys Arg Ser Cys Pro Val Val Arg
```

```
<210> SEQ ID NO 117
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 117
Ser Ser Gln His Leu Phe Leu Asp Leu Pro Lys
1 5
<210> SEQ ID NO 118
<211> LENGTH: 98
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 118
Leu Glu Lys Arg Leu Glu Asp Trp Leu Gly Lys Thr Val Pro Gly Ser 1 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Asp Trp Thr Pro Asn Ala Arg Phe Ile Ile Arg Ser Trp Leu Arg Asp
Gly Leu Lys Pro Arg Cys Ile Thr Arg Asp Leu Lys Trp Gly Thr Pro
                    40
Val Pro Leu Glu Gly Phe Glu Asp Lys Val Phe Tyr Val Trp Phe Asp 50 \, 60
Ala Thr Ile Gly Tyr Val Ser Ile Thr Ala Asn Tyr Thr Asp Gln Trp 65 70 75 80
Glu Lys Trp Trp Lys Asn Pro Glu Gln Val Asp Leu Tyr Gln Phe Met
Ala Lys
<210> SEQ ID NO 119
<211> LENGTH: 25
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 119
Asp Asn Val Pro Phe His Gly Leu Val Phe Pro Cys Ser Val Leu Gly
Ala Glu Asp Asn Tyr Thr Leu Val Lys
      20
<210> SEQ ID NO 120
<211> LENGTH: 14
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 120
His Ile Ile Ala Thr Glu Tyr Leu Asn Tyr Glu Asp Gly Lys
1 5
<210> SEQ ID NO 121
<211> LENGTH: 30
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 121
Phe Ser Lys Ser Arg Gly Ile Gly Val Phe Gly Asp Met Ala Lys Asp
                       10
Thr Gly Ile Pro Ala Asp Ile Trp Arg Phe Tyr Leu Leu Tyr
                                25
```

```
<210> SEQ ID NO 122
<211> LENGTH: 33
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 122
Ile Arg Pro Glu Gly Gln Asp Ser Ala Phe Ser Trp Thr Asp Leu Leu
Ile Lys Asn Asn Ser Glu Leu Leu Asn Asn Leu Gly Asn Phe Ile Asn
Arg
<210> SEQ ID NO 123
<211> LENGTH: 57
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 123
Ala Gly Met Phe Val Ser Lys Phe Phe Gly Gly Cys Val Pro Glu Met
Ala Leu Thr Pro Asp Asp Arg Arg Leu Val Ala His Val Ser Trp Glu
Leu Gln His Tyr His Gln Leu Leu Glu Lys Val Arg Ile Arg Asp Ala
                         40
Leu Arg Ser Ile Leu Thr Ile Ser Arg
   50
<210> SEQ ID NO 124
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 124
His Gly Asn Gln Tyr Ile Gln Val Asn Glu Pro Trp Lys Arg
<210> SEQ ID NO 125
<211> LENGTH: 67
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 125
Ile Lys Gly Glu Met Asp Arg Gln Arg Ala Gly Thr Val Thr Gly
Met Ala Val Asn Met Ala Ala Leu Leu Ser Val Met Leu Gln Pro Tyr
Met Pro Thr Val Ser Ser Thr Ile Gln Thr Gln Leu Gln Leu Pro Pro
Ala Ala Cys Arg Ile Leu Ala Thr Ser Phe Ile Cys Thr Leu Pro Ala
  50
                      55
Gly His Arg
<210> SEQ ID NO 126
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 126
Ile Gly Thr Val Ser Pro Leu Phe Gln Lys
```

```
10
<210> SEQ ID NO 127
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 127
Leu Glu Asn Asp Gln Ile Glu Asn Leu Arg
1 5
<210> SEQ ID NO 128
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 128
Gln Arg Phe Gly Gly Gly Gln Ala Lys 1 \phantom{000} 5
<210> SEQ ID NO 129
<211> LENGTH: 28
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 129
Gly Ser Pro Lys Pro Ala Ala Val Glu Ala Val Thr Ala Ala Gly Ser 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Gln His Ile Gln Thr Leu Thr Asp Glu Val Thr Lys
           2.0
<210> SEQ ID NO 130
<211> LENGTH: 30
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 130
Gln Gly Asn Val Val Arg Glu Leu Lys Ala Gln Lys Ala Asp Lys Asn
                                    10
Gln Val Ala Ala Glu Val Ala Lys Leu Leu Asp Leu Lys Lys
                                 25
<210> SEQ ID NO 131
<211> LENGTH: 14
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 131
Gln Leu Ala Leu Ala Glu Gly Lys Pro Ile Glu Thr Pro Lys
<210> SEQ ID NO 132
<211> LENGTH: 681
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 132
Thr Val Ser Asn Glu Leu Glu Glu Glu Glu Leu Ala Thr Leu Ser Glu
                5
Glu Asp Ile Val Thr Ala Val Ala Ala Trp Glu Lys Gly Leu Glu Ser
                                 25
Leu Pro Pro Leu Lys Leu Gln Gln His Pro Val Leu Pro Val Pro Gly
                   40
```

Glu	Arg 50	Asn	Val	Leu	Ile	Thr 55	Ser	Ala	Leu	Pro	Tyr 60	Val	Asn	Asn	Val
Pro 65	His	Leu	Gly	Asn	Ile 70		Gly	Сув	Val	Leu 75		Ala	Asp	Val	Phe 80
	Arg	Tyr	Cys	Arg 85		Arg	Gln	Trp	Asn 90		Leu	Tyr	Leu	Сув 95	
Thr	Asp	Glu	Tyr 100	Gly	Thr	Ala	Thr	Glu 105	Thr	Lys	Ala	Met	Glu 110	Glu	Gly
Leu	Thr	Pro	Arg	Glu	Ile	СЛа	Asp 120	Lys	Tyr	His	Ala	Ile 125	His	Ala	Asp
Ile	Tyr 130	Arg	Trp	Phe	Gly	Ile 135	Ser	Phe	Asp	Thr	Phe	Gly	Arg	Thr	Thr
Thr 145	Pro	Gln	Gln	Thr	Lys 150	Ile	Thr	Gln	Asp	Ile 155	Phe	Gln	Arg	Leu	Leu 160
Thr	Arg	Gly	Phe	Val 165	Leu	Arg	Asp	Thr	Val 170	Glu	Gln	Leu	Arg	Cys 175	Glu
Arg	Cys	Ala	Arg 180	Phe	Leu	Ala	Asp	Arg 185	Phe	Val	Glu	Gly	Val 190	Cys	Pro
Phe	Cys	Gly 195	Tyr	Glu	Glu	Ala	Arg 200	Gly	Asp	Gln	CÀa	Asp 205	Arg	Cys	Gly
ГÀа	Leu 210	Ile	Asn	Ala	Ile	Glu 215	Leu	Lys	Lys	Pro	Gln 220	CÀa	ГЛа	Ile	CÀa
Arg 225	Ser	Cys	Pro	Val	Val 230	Arg	Ser	Ser	Gln	His 235	Leu	Phe	Leu	Asp	Leu 240
Pro	Lys	Leu	Glu	Lys 245	Arg	Leu	Glu	Asp	Trp 250	Leu	Gly	ГÀЗ	Thr	Val 255	Pro
Gly	Ser	Asp	Trp 260	Thr	Pro	Asn	Ala	Arg 265	Phe	Ile	Ile	Arg	Ser 270	Trp	Leu
Arg	Asp	Gly 275	Leu	rys	Pro	Arg	Сув 280	Ile	Thr	Arg	Asp	Leu 285	Lys	Trp	Gly
Thr	Pro 290	Val	Pro	Leu	Glu	Gly 295	Phe	Glu	Asp	Lys	Val 300	Phe	Tyr	Val	Trp
Phe 305	Asp	Ala	Thr	Ile	Gly 310	Tyr	Val	Ser	Ile	Thr 315	Ala	Asn	Tyr	Thr	Asp 320
Gln	Trp	Glu	Lys	Trp 325	Trp	Lys	Asn	Pro	Glu 330	Gln	Val	Asp	Leu	Tyr 335	Gln
Phe	Met	Ala	Lys 340	Asp	Asn	Val	Pro	Phe 345	His	Gly	Leu	Val	Phe 350	Pro	CAa
Ser	Val	Leu 355	Gly	Ala	Glu	Asp	Asn 360	Tyr	Thr	Leu	Val	Lys 365	His	Ile	Ile
Ala	Thr 370	Glu	Tyr	Leu	Asn	Tyr 375	Glu	Asp	Gly	Lys	Phe 380	Ser	Lys	Ser	Arg
Gly 385	Ile	Gly	Val	Phe	Gly 390	Asp	Met	Ala	Lys	Asp 395	Thr	Gly	Ile	Pro	Ala 400
Asp	Ile	Trp	Arg	Phe 405	Tyr	Leu	Leu	Tyr	Ile 410	Arg	Pro	Glu	Gly	Gln 415	Asp
Ser	Ala	Phe	Ser 420	Trp	Thr	Asp	Leu	Leu 425	Ile	Lys	Asn	Asn	Ser 430	Glu	Leu
Leu	Asn	Asn 435	Leu	Gly	Asn	Phe	Ile 440	Asn	Arg	Ala	Gly	Met 445	Phe	Val	Ser
ГÀз	Phe 450	Phe	Gly	Gly	Сла	Val 455	Pro	Glu	Met	Ala	Leu 460	Thr	Pro	Asp	Asp

-continued

Arg Arg Leu Val Ala His Val Ser Trp Glu Leu Gln His Tyr His Gln 470 Leu Leu Glu Lys Val Arg Ile Arg Asp Ala Leu Arg Ser Ile Leu Thr Ile Ser Arg His Gly Asn Gln Tyr Ile Gln Val Asn Glu Pro Trp Lys 505 Arg Ile Lys Gly Gly Glu Met Asp Arg Gln Arg Ala Gly Thr Val Thr Gly Met Ala Val Asn Met Ala Ala Leu Leu Ser Val Met Leu Gln Pro Tyr Met Pro Thr Val Ser Ser Thr Ile Gln Thr Gln Leu Gln Leu Pro Pro Ala Ala Cys Arg Ile Leu Ala Thr Ser Phe Ile Cys Thr Leu Pro Ala Gly His Arg Ile Gly Thr Val Ser Pro Leu Phe Gln Lys Leu Glu Asn Asp Gln Ile Glu Asn Leu Arg Gln Arg Phe Gly Gly Gln Ala Lys Gly Ser Pro Lys Pro Ala Ala Val Glu Ala Val Thr Ala Ala Gly 615 Ser Gln His Ile Gln Thr Leu Thr Asp Glu Val Thr Lys Gln Gly Asn 630 635 Val Val Arg Glu Leu Lys Ala Gln Lys Ala Asp Lys Asn Gln Val Ala 645 650 Ala Glu Val Ala Lys Leu Leu Asp Leu Lys Lys Gln Leu Ala Leu Ala Glu Gly Lys Pro Ile Glu Thr Pro Lys 675 <210> SEQ ID NO 133 <211> LENGTH: 349 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 133 Met Ala Lys Asp Asn Val Pro Phe His Ser Leu Val Phe Pro Cys Ser Ala Leu Gly Ala Glu Asp Asn Tyr Thr Leu Val Ser His Leu Ile Ala Thr Glu Tyr Leu Asn Tyr Glu Asp Gly Lys Phe Ser Lys Ser Arg Gly Val Gly Val Phe Gly Asp Met Ala Gln Asp Thr Gly Ile Pro Ala Asp Ile Trp Arg Phe Tyr Leu Leu Tyr Ile Arg Pro Glu Gly Gln Asp Ser Ala Phe Ser Trp Thr Asp Leu Leu Leu Lys Asn Asn Ser Glu Leu Leu Asn Asn Leu Gly Asn Phe Ile Asn Arg Ala Gly Met Phe Val Ser Lys 105 Phe Phe Gly Gly Tyr Val Pro Glu Met Val Leu Thr Pro Asp Asp Gln Arg Leu Leu Ala His Val Thr Leu Glu Leu Gln His Tyr His Gln Leu 135 Leu Glu Lys Val Arg Ile Arg Asp Ala Leu Arg Ser Ile Leu Thr Ile 155

Ser A	J	His	Gly		Gln	Tree	T7 -	G7			~ 1	D	m	T	_
T1 - T.	Jys (165		IYI	iie	GIN	170	Asn	GIU	Pro	Trp	175	Arg
тте г		Gly	Ser 180	Glu	Ala	Asp	Arg	Gln 185	Arg	Ala	Gly	Thr	Val 190	Thr	Gly
Leu A		Val 195	Asn	Ile	Ala	Ala	Leu 200	Leu	Ser	Val	Met	Leu 205	Gln	Pro	Tyr
Met P	Pro 210	Thr	Val	Ser	Ala	Thr 215	Ile	Gln	Ala	Gln	Leu 220	Gln	Leu	Pro	Pro
Pro A 225	Ala	Сув	Ser	Ile	Leu 230	Leu	Thr	Asn	Phe	Leu 235	Сув	Thr	Leu	Pro	Ala 240
Gly H	His (Gln	Ile	Gly 245	Thr	Val	Ser	Pro	Leu 250	Phe	Gln	Lys	Leu	Glu 255	Asn
Asp G	Gln	Ile	Glu 260	Ser	Leu	Arg	Gln	Arg 265	Phe	Gly	Gly	Gly	Gln 270	Ala	Lys
Thr S		Pro 275	Lys	Pro	Ala	Val	Val 280	Glu	Thr	Val	Thr	Thr 285	Ala	Lys	Pro
Gln G 2	31n 290	Ile	Gln	Ala	Leu	Met 295	Asp	Glu	Val	Thr	300 Lys	Gln	Gly	Asn	Ile
Val A	Arg	Glu	Leu	Lys	Ala 310	Gln	Lys	Ala	Asp	Lys 315	Asn	Glu	Val	Ala	Ala 320
Glu V	/al /	Ala	Lys	Leu 325	Leu	Asp	Leu	Lys	Lys 330	Gln	Leu	Ala	Val	Ala 335	Glu
Gly L	-ya	Pro	Pro 340	Glu	Ala	Pro	Lys	Gly 345	ГЛа	Lys	Lys	ГÀа			

<210> SEQ ID NO 134

<211> LENGTH: 1050

<212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 134

atggccaaag acaatgttcc tttccatagc ttagtctttc cttgctcagc cctaggagct 60 gaggataact ataccttggt cagccacctc attgctacag agtacctgaa ctatgaggat 120 gggaaattct ctaagagccg cggtgtggga gtgtttgggg acatggccca ggacacgggg 180 atccctgctg acatctggcg cttctatctg ctgtacattc ggcctgaggg ccaggacagt 240 gettteteet ggaeggaeet getgetgaag aataattetg agetgettaa caacetggge 300 aacttcatca acagagctgg gatgtttgtg tctaagttct ttgggggcta tgtgcctgag 360 atggtgctca cccctgatga tcagcgcctg ctggcccatg tcaccctgga gctccagcac tatcaccage taettgagaa ggtteggate egggatgeet tgegeagtat eeteaccata tctcgacatg gcaaccaata tattcaggtg aatgagccct ggaagcggat taaaggcagt 540 gaggctgaca ggcaacgggc aggaacagtg actggcttgg cagtgaatat agctgccttg 600 ctctctgtca tgcttcagcc ttacatgccc acggttagtg ccacaatcca ggcccagctg 660 cageteceae etecageetg cagtateetg etgacaaaet teetgtgtae ettaceagea 720 ggacaccaga ttggcacagt cagtcccttg ttccaaaaat tggaaaatga ccagattgaa 780 agtttaaggc agcgctttgg agggggccag gcaaaaacgt ccccgaagcc agcagttgta 840 gagactgtta caacagccaa gccacagcag atacaagcgc tgatggatga agtgacaaaa caaggaaaca ttgtccgaga actgaaagca caaaaggcag acaagaacga ggttgctgcg 960 gaggtggcga aactettgga tetaaagaaa cagttggetg tagetgaggg gaaaceeect 1020

321

-continued

gaagccccta aaggcaagaa gaaaaagtaa <210> SEQ ID NO 135 <211> LENGTH: 323 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 135 Met Val Glu Glu Pro Arg Ala Lys Tyr Leu Asn Tyr Glu Asp Gly Lys Phe Ser Lys Ser Arg Gly Val Gly Val Phe Gly Asp Met Ala Gln Asp Thr Gly Ile Pro Ala Asp Ile Trp Arg Phe Tyr Leu Leu Tyr Ile Arg 35 40 45 Pro Glu Gly Gln Asp Ser Ala Phe Ser Trp Thr Asp Leu Leu Lys Asn Asn Ser Glu Leu Leu Asn Asn Leu Gly Asn Phe Ile Asn Arg Ala 65 70 75 80 Gly Met Phe Val Ser Lys Phe Phe Gly Gly Tyr Val Pro Glu Met Val Leu Thr Pro Asp Asp Gln Arg Leu Leu Ala His Val Thr Leu Glu Leu 100 $$105\$ Gln His Tyr His Gln Leu Leu Glu Lys Val Arg Ile Arg Asp Ala Leu Arg Ser Ile Leu Thr Ile Ser Arg His Gly Asn Gln Tyr Ile Gln Val 135 Asn Glu Pro Trp Lys Arg Ile Lys Gly Ser Glu Ala Asp Arg Gln Arg 150 Ala Gly Thr Val Thr Gly Leu Ala Val Asn Ile Ala Ala Leu Leu Ser Val Met Leu Gln Pro Tyr Met Pro Thr Val Ser Ala Thr Ile Gln Ala 185 Gln Leu Gln Leu Pro Pro Pro Ala Cys Ser Ile Leu Leu Thr Asn Phe 200 Leu Cys Thr Leu Pro Ala Gly His Gln Ile Gly Thr Val Ser Pro Leu Phe Gln Lys Leu Glu Asn Asp Gln Ile Glu Ser Leu Arg Gln Arg Phe Gly Gly Gly Gln Ala Lys Thr Ser Pro Lys Pro Ala Val Val Glu Thr Val Thr Thr Ala Lys Pro Gln Gln Ile Gln Ala Leu Met Asp Glu Val Thr Lys Gln Gly Asn Ile Val Arg Glu Leu Lys Ala Gln Lys Ala Asp Lys Asn Glu Val Ala Ala Glu Val Ala Lys Leu Leu Asp Leu Lys Lys 295 Gln Leu Ala Val Ala Glu Gly Lys Pro Pro Glu Ala Pro Lys Gly Lys Lys Lys Lys <210> SEQ ID NO 136 <211> LENGTH: 972 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 136

```
atggtggaag aacccagagc aaagtacctg aactatgagg atgggaaatt ctctaagagc
                                                                      60
cgcggtgtgg gagtgtttgg ggacatggcc caggacacgg ggatccctgc tgacatctgg
                                                                     120
cgcttctatc tgctgtacat tcggcctgag ggccaggaca gtgctttctc ctggacggac
                                                                     180
ctgctgctga agaataattc tgagctgctt aacaacctgg gcaacttcat caacagagct
                                                                      240
gggatgtttg tgtctaagtt ctttgggggc tatgtgcctg agatggtgct cacccctgat
                                                                     300
gatcagogoc tgotggocca tgtcaccotg gagotocago actatcacca gotacttgag
aaggttegga teegggatge ettgegeagt ateeteacea tatetegaea tggeaaceaa
tatattcagg tgaatgagcc ctggaagcgg attaaaggca gtgaggctga caggcaacgg
gcaggaacag tgactggctt ggcagtgaat atagctgcct tgctctctgt catgcttcag
                                                                     540
                                                                     600
cettacatge ecaeggitag tgecacaate caggeccage tgeageteec acetecagee
tgcagtatcc tgctgacaaa cttcctgtgt accttaccag caggacacca gattggcaca
                                                                     660
gtcagtccct tgttccaaaa attggaaaat gaccagattg aaagtttaag gcagcgcttt
                                                                     720
                                                                     780
qqaqqqqqcc aqqcaaaaac qtccccqaaq ccaqcaqttq taqaqactqt tacaacaqcc
aaqccacaqc aqatacaaqc qctqatqqat qaaqtqacaa aacaaqqaaa cattqtccqa
                                                                     840
qaactqaaaq cacaaaaqqc aqacaaqaac qaqqttqctq cqqaqqtqqc qaaactcttq
                                                                     900
gatctaaaga aacagttggc tgtagctgag gggaaacccc ctgaagcccc taaaggcaag
                                                                     960
                                                                     972
aaqaaaaaqt aa
<210> SEQ ID NO 137
<211> LENGTH: 55
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 137
Met Asp Glu Val Thr Lys Gln Gly Asn Ile Val Arg Glu Leu Lys Ala
Gln Lys Ala Asp Lys Asn Glu Val Ala Ala Glu Val Ala Lys Leu Leu
Asp Leu Lys Lys Gln Leu Ala Val Ala Glu Gly Lys Pro Pro Glu Ala
Pro Lys Gly Lys Lys Lys
<210> SEQ ID NO 138
<211> LENGTH: 168
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 138
atggatgaag tgacaaaaca aggaaacatt gtccgagaac tgaaagcaca aaaggcagac
                                                                      60
aagaacgagg ttgctgcgga ggtggcgaaa ctcttggatc taaagaaaca gttggctgta
                                                                     120
gctgagggga aacccctga agcccctaaa ggcaagaaga aaaagtaa
                                                                     168
<210> SEO TD NO 139
<211> LENGTH: 773
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
```

<400> SEOUENCE: 139

Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu 10

Val Gly Pro Glu Glu Glu Leu Ser Ala Leu His Ser Trp Phe Glu Glu Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Ser Trp Phe Glu Glu Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Glu Glu Glu Fro Trp Glu Glu Glu Glu Fro Glu Glu	Lys O Gln 80 I Glu Ala I Asn
35	Lys O Gln 80 I Glu Ala Asn Ala
50	o Gln 80 1 Glu Ala 1 Asn 2 Ala
65 70 75 Pro Ser Pro Ala Glu Gly Arg Ala Val Thr Asn Glu Pro Glu Gly 95 Glu Leu Ala Thr Leu Ser Glu Glu Glu Ile Ala Met Ala Val Thr 100 Trp Glu Lys Gly Leu Glu Ser Leu Pro Pro Leu Arg Pro Gln Glr 125 Pro Val Leu Pro Val Ala Gly Glu Arg Asn Val Leu Ile Thr Ser 130 Leu Pro Tyr Val Asn Asn Val Pro His Leu Gly Asn Ile Ile Gly	80 1 Glu Ala 1 Asn Ala Cys
S5 90 95 95 95 95 96 95 96 95 96 97 97 98 98 98 98 98 98	Ala Asn Ala Ala
Trp Glu Lys Gly Leu Glu Ser Leu Pro Pro Leu Arg Pro Gln Gln Gln 125 Pro Val Leu Pro Val Ala Gly Glu Arg Asn Val Leu Ile Thr Ser 130 Leu Pro Tyr Val Asn Asn Val Pro His Leu Gly Asn Ile Ile Gly Glu Arg Asn Val Leu Ile Gly Asn Ile Ile Gly Ile Ile Gly Asn Ile Ile Gly Ile Ile Gly Ile Ile Gly Ile Ile Ile Gly Ile	n Asn Ala 7 Cys
Pro Val Leu Pro Val Ala Gly Glu Arg Asn Val Leu Ile Thr Sei 130 135 140 Leu Pro Tyr Val Asn Asn Val Pro His Leu Gly Asn Ile Ile Gly	Ala Cys
130 135 140 Leu Pro Tyr Val Asn Asn Val Pro His Leu Gly Asn Ile Ile Gly	v Cha
	_
145 150 155	
Val Leu Ser Ala Asp Val Phe Ala Arg Tyr Ser Arg Leu Arg Gli 165 170 179	_
Asn Thr Leu Tyr Leu Cys Gly Thr Asp Glu Tyr Gly Thr Ala Th: 180 185 190	: Glu
Thr Lys Ala Leu Glu Glu Gly Leu Thr Pro Gln Glu Ile Cys Asp 195 200 205) Lys
Tyr His Ile Ile His Ala Asp Ile Tyr Arg Trp Phe Asn Ile Ser 210 215 220	: Phe
Asp Ile Phe Gly Arg Thr Thr Thr Pro Gln Gln Thr Lys Ile Th 225 230 235	Gln 240
Asp Ile Phe Gln Gln Leu Leu Lys Arg Gly Phe Val Leu Gln Asp 245 250 250	
Val Glu Gln Leu Arg Cys Glu His Cys Ala Arg Phe Leu Ala As 260 265 270	Arg
Phe Val Glu Gly Val Cys Pro Phe Cys Gly Tyr Glu Glu Ala Ar 275 280 285	, Gly
Asp Gln Cys Asp Lys Cys Gly Lys Leu Ile Asn Ala Val Glu Leu 290 295 300	ı Lys
Lys Pro Gln Cys Lys Val Cys Arg Ser Cys Pro Val Val Gln Ser 305 310 315	Ser 320
Gln His Leu Phe Leu Asp Leu Pro Lys Leu Glu Lys Arg Leu Glu 325 330 339	
Trp Leu Gly Arg Thr Leu Pro Gly Ser Asp Trp Thr Pro Asn Ala 340 345 350	ı Gln
Phe Ile Thr Arg Ser Trp Leu Arg Asp Gly Leu Lys Pro Arg Cyc 355 360 365	; Ile
Thr Arg Asp Leu Lys Trp Gly Thr Pro Val Pro Leu Glu Gly Pho 370 375 380	e Glu
Asp Lys Val Phe Tyr Val Trp Phe Asp Ala Thr Ile Gly Tyr Let 385 390 395	Ser 400
Ile Thr Ala Asn Tyr Thr Asp Gln Trp Glu Arg Trp Trp Lys Ass 405 410 41!	
Glu Gln Val Asp Leu Tyr Gln Phe Met Ala Lys Asp Asn Val Pro 420 425 430	> Phe

His	Ser	Leu 435	Val	Phe	Pro	Cys	Ser 440	Ala	Leu	Gly	Ala	Glu 445	Asp	Asn	Tyr
Thr	Leu 450	Val	Ser	His	Leu	Ile 455	Ala	Thr	Glu	Tyr	Leu 460	Asn	Tyr	Glu	Asp
Gly 465	Lys	Phe	Ser	Lys	Ser 470	Arg	Gly	Val	Gly	Val 475	Phe	Gly	Asp	Met	Ala 480
Gln	Asp	Thr	Gly	Ile 485	Pro	Ala	Asp	Ile	Trp 490	Arg	Phe	Tyr	Leu	Leu 495	Tyr
Ile	Arg	Pro	Glu 500	Gly	Gln	Asp	Ser	Ala 505	Phe	Ser	Trp	Thr	Asp 510	Leu	Leu
Leu	Lys	Asn 515	Asn	Ser	Glu	Leu	Leu 520	Asn	Asn	Leu	Gly	Asn 525	Phe	Ile	Asn
Arg	Ala 530	Gly	Met	Phe	Val	Ser 535	Lys	Phe	Phe	Gly	Gly 540	Tyr	Val	Pro	Glu
Met 545	Val	Leu	Thr	Pro	Asp 550	Asp	Gln	Arg	Leu	Leu 555	Ala	His	Val	Thr	Leu 560
Glu	Leu	Gln	His	Tyr 565	His	Gln	Leu	Leu	Glu 570	Lys	Val	Arg	Ile	Arg 575	Aap
Ala	Leu	Arg	Ser 580	Ile	Leu	Thr	Ile	Ser 585	Arg	His	Gly	Asn	Gln 590	Tyr	Ile
Gln	Val	Asn 595	Glu	Pro	Trp	ГÀа	Arg 600	Ile	Lys	Gly	Ser	Glu 605	Ala	Asp	Arg
Gln	Arg 610	Ala	Gly	Thr	Val	Thr 615	Gly	Leu	Ala	Val	Asn 620	Ile	Ala	Ala	Leu
Leu 625	Ser	Val	Met	Leu	Gln 630	Pro	Tyr	Met	Pro	Thr 635	Val	Ser	Ala	Thr	Ile 640
Gln	Ala	Gln	Leu	Gln 645	Leu	Pro	Pro	Pro	Ala 650	СЛа	Ser	Ile	Leu	Leu 655	Thr
Asn	Phe	Leu	660 Cys	Thr	Leu	Pro	Ala	Gly 665	His	Gln	Ile	Gly	Thr 670	Val	Ser
Pro	Leu	Phe 675	Gln	Lys	Leu	Glu	Asn 680	Asp	Gln	Ile	Glu	Ser 685	Leu	Arg	Gln
Arg	Phe 690	Gly	Gly	Gly	Gln	Ala 695	Lys	Thr	Ser	Pro	Lys 700	Pro	Ala	Val	Val
Glu 705	Thr	Val	Thr	Thr	Ala 710	Lys	Pro	Gln	Gln	Ile 715	Gln	Ala	Leu	Met	Asp 720
Glu	Val	Thr	ГÀв	Gln 725	Gly	Asn	Ile	Val	Arg 730	Glu	Leu	ГÀа	Ala	Gln 735	Lys
Ala	Asp	ГЛа	Asn 740	Glu	Val	Ala	Ala	Glu 745	Val	Ala	ГЛа	Leu	Leu 750	Asp	Leu
Lys	Lys	Gln 755	Leu	Ala	Val	Ala	Glu 760	Gly	Lys	Pro	Pro	Glu 765	Ala	Pro	ГЛа
Gly	Lys 770	Lys	Lys	Lys											
<211 <212	<210> SEQ ID NO 140 <211> LENGTH: 2322 <212> TYPE: DNA <213> ORGANISM: Homo sapiens														
<400	<400> SEQUENCE: 140														
atga	agact	gt t	cgt	gagto	ga to	ggcgt	cccç	g ggt	tgct	tgc	cggt	gct	ggc (egeeg	jeeggg
agag	gadag	999 9	gcaga	agcaç	ga go	gtgct	cato	ago	cacto	gtag	gcc	eggaa	aga (ggago	tgagt
acco	ctaca	aca o	acta	atte	ca qa	acact	aaqt	aco	caq	aac	cato	atcad	aca a	ageto	cagag

gccctgcaca gctggttcca gacactgagt acccaggaac catgtcagcg agctgcagag

actgtactga	aacagcaagg	tgtcctggct	ctccggcctt	acctccaaaa	gcagccccag	240
cccagccccg	ctgagggaag	ggctgtcacc	aatgagcctg	aggaggagga	gctggctacc	300
ctatctgagg	aggagattgc	tatggctgtt	actgcttggg	agaagggcct	agaaagtttg	360
cccccgctgc	ggccccagca	gaatccagtg	ttgcctgtgg	ctggagaaag	gaatgtgctc	420
atcaccagtg	ccctccctta	cgtcaacaat	gtcccccacc	ttgggaacat	cattggttgt	480
gtgctcagtg	ccgatgtctt	tgccaggtac	tetegeetee	gccagtggaa	caccctctat	540
ctgtgtggga	cagatgagta	tggtacagca	acagagacca	aggetetgga	ggagggacta	600
accccccagg	agatetgega	caagtaccac	atcatccatg	ctgacatcta	ccgctggttt	660
aacatttcgt	ttgatatttt	tggtcgcacc	accactccac	agcagaccaa	aatcacccag	720
gacattttcc	agcagttgct	gaaacgaggt	tttgtgctgc	aagatactgt	ggagcaactg	780
cgatgtgagc	actgtgctcg	cttcctggct	gaccgcttcg	tggagggcgt	gtgtcccttc	840
tgtggctatg	aggaggeteg	gggtgaccag	tgtgacaagt	gtggcaagct	catcaatgct	900
gtcgagctta	agaagcctca	gtgtaaagtc	tgccgatcat	gccctgtggt	gcagtcgagc	960
cagcacctgt	ttctggacct	gcctaagctg	gagaagcgac	tggaggagtg	gttggggagg	1020
acattgcctg	gcagtgactg	gacacccaat	gcccagttta	tcacccgttc	ttggcttcgg	1080
gatggcctca	agccacgctg	cataacccga	gacctcaaat	ggggaacccc	tgtaccctta	1140
gaaggttttg	aagacaaggt	attctatgtc	tggtttgatg	ccactattgg	ctatctgtcc	1200
atcacagcca	actacacaga	ccagtgggag	agatggtgga	agaacccaga	gcaagtggac	1260
ctgtatcagt	tcatggccaa	agacaatgtt	cctttccata	gcttagtctt	tccttgctca	1320
gccctaggag	ctgaggataa	ctataccttg	gtcagccacc	tcattgctac	agagtacctg	1380
aactatgagg	atgggaaatt	ctctaagagc	cgcggtgtgg	gagtgtttgg	ggacatggcc	1440
caggacacgg	ggatccctgc	tgacatctgg	cgcttctatc	tgctgtacat	teggeetgag	1500
ggccaggaca	gtgetttete	ctggacggac	ctgctgctga	agaataattc	tgagctgctt	1560
aacaacctgg	gcaacttcat	caacagagct	gggatgtttg	tgtctaagtt	ctttgggggc	1620
tatgtgcctg	agatggtgct	cacccctgat	gatcagcgcc	tgctggccca	tgtcaccctg	1680
gagetecage	actatcacca	gctacttgag	aaggttcgga	teegggatge	cttgcgcagt	1740
atcctcacca	tatctcgaca	tggcaaccaa	tatattcagg	tgaatgagcc	ctggaagcgg	1800
attaaaggca	gtgaggctga	caggcaacgg	gcaggaacag	tgactggctt	ggcagtgaat	1860
atagetgeet	tgetetetgt	catgetteag	ccttacatgc	ccacggttag	tgccacaatc	1920
caggcccagc	tgcagctccc	acctccagcc	tgcagtatcc	tgctgacaaa	cttcctgtgt	1980
accttaccag	caggacacca	gattggcaca	gtcagtccct	tgttccaaaa	attggaaaat	2040
gaccagattg	aaagtttaag	gcagcgcttt	ggaggggcc	aggcaaaaac	gtccccgaag	2100
ccagcagttg	tagagactgt	tacaacagcc	aagccacagc	agatacaagc	gctgatggat	2160
gaagtgacaa	aacaaggaaa	cattgtccga	gaactgaaag	cacaaaaggc	agacaagaac	2220
gaggttgctg	cggaggtggc	gaaactcttg	gatctaaaga	aacagttggc	tgtagctgag	2280
gggaaacccc	ctgaagcccc	taaaggcaag	aagaaaaagt	aa		2322

<210> SEQ ID NO 141 <211> LENGTH: 666 <212> TYPE: PRT <213> ORGANISM: Homo sapiens

< 400)> SI	EQUEI	ICE :	141											
Met 1	Ala	Val	Thr	Ala 5	Trp	Glu	Lys	Gly	Leu 10	Glu	Ser	Leu	Pro	Pro 15	Leu
Arg	Pro	Gln	Gln 20	Asn	Pro	Val	Leu	Pro 25	Val	Ala	Gly	Glu	Arg 30	Asn	Val
Leu	Ile	Thr 35	Ser	Ala	Leu	Pro	Tyr 40	Val	Asn	Asn	Val	Pro 45	His	Leu	Gly
Asn	Ile 50	Ile	Gly	СЛа	Val	Leu 55	Ser	Ala	Asp	Val	Phe 60	Ala	Arg	Tyr	Ser
Arg 65	Leu	Arg	Gln	Trp	Asn 70	Thr	Leu	Tyr	Leu	Сув 75	Gly	Thr	Asp	Glu	Tyr 80
Gly	Thr	Ala	Thr	Glu 85	Thr	Lys	Ala	Leu	Glu 90	Glu	Gly	Leu	Thr	Pro 95	Gln
Glu	Ile	Сла	Asp 100	Lys	Tyr	His	Ile	Ile 105	His	Ala	Asp	Ile	Tyr 110	Arg	Trp
Phe	Asn	Ile 115	Ser	Phe	Asp	Ile	Phe 120	Gly	Arg	Thr	Thr	Thr 125	Pro	Gln	Gln
Thr	Lys 130	Ile	Thr	Gln	Asp	Ile 135	Phe	Gln	Gln	Leu	Leu 140	Lys	Arg	Gly	Phe
Val 145	Leu	Gln	Asp	Thr	Val 150	Glu	Gln	Leu	Arg	Сув 155	Glu	His	CAa	Ala	Arg 160
Phe	Leu	Ala	Asp	Arg 165	Phe	Val	Glu	Gly	Val 170	СЛв	Pro	Phe	CAa	Gly 175	Tyr
Glu	Glu	Ala	Arg 180	Gly	Asp	Gln	Cys	Asp 185	Lys	CAa	Gly	ГÀа	Leu 190	Ile	Asn
Ala	Val	Glu 195	Leu	Lys	Lys	Pro	Gln 200	Cys	Lys	Val	Cys	Arg 205	Ser	Cys	Pro
Val	Val 210	Gln	Ser	Ser	Gln	His 215	Leu	Phe	Leu	Asp	Leu 220	Pro	Lys	Leu	Glu
Lys 225	Arg	Leu	Glu	Glu	Trp 230	Leu	Gly	Arg	Thr	Leu 235	Pro	Gly	Ser	Asp	Trp 240
Thr	Pro	Asn	Ala	Gln 245	Phe	Ile	Thr	Arg	Ser 250	Trp	Leu	Arg	Asp	Gly 255	Leu
ГÀа	Pro	Arg	Cys 260	Ile	Thr	Arg	Asp	Leu 265	Lys	Trp	Gly	Thr	Pro 270	Val	Pro
Leu	Glu	Gly 275	Phe	Glu	Asp	Lys	Val 280	Phe	Tyr	Val	Trp	Phe 285	Asp	Ala	Thr
Ile	Gly 290	Tyr	Leu	Ser	Ile	Thr 295	Ala	Asn	Tyr	Thr	300 3p	Gln	Trp	Glu	Arg
Trp 305	Trp	Lys	Asn	Pro	Glu 310	Gln	Val	Asp	Leu	Tyr 315	Gln	Phe	Met	Ala	Lys 320
Asp	Asn	Val	Pro	Phe 325	His	Ser	Leu	Val	Phe 330	Pro	CÀa	Ser	Ala	Leu 335	Gly
Ala	Glu	Asp	Asn 340	Tyr	Thr	Leu	Val	Ser 345	His	Leu	Ile	Ala	Thr 350	Glu	Tyr
Leu	Asn	Tyr 355	Glu	Asp	Gly	Lys	Phe 360	Ser	Lys	Ser	Arg	Gly 365	Val	Gly	Val
Phe	Gly 370	Asp	Met	Ala	Gln	Asp 375	Thr	Gly	Ile	Pro	Ala 380	Asp	Ile	Trp	Arg
Phe	Tyr	Leu	Leu	Tyr	Ile 390	Arg	Pro	Glu	Gly	Gln 395	Asp	Ser	Ala	Phe	Ser 400
Trp	Thr	Asp	Leu	Leu 405	Leu	Lys	Asn	Asn	Ser 410	Glu	Leu	Leu	Asn	Asn 415	Leu

Gly Asn Phe Ile Asn Arg Ala Gly Met Phe Val Ser Lys Phe Phe Gly

Gly Tyr Val Pro Glu Met Val Leu Thr Pro Asp Asp Gln Arg Leu Leu 435 440 445 Ala His Val Thr Leu Glu Leu Gln His Tyr His Gln Leu Leu Glu Lys 450 455	
Val Arg Ile Arg Asp Ala Leu Arg Ser Ile Leu Thr Ile Ser Arg His 465 470 475 480	
Gly Asn Gln Tyr Ile Gln Val Asn Glu Pro Trp Lys Arg Ile Lys Gly 485 490 495	
Ser Glu Ala Asp Arg Gln Arg Ala Gly Thr Val Thr Gly Leu Ala Val 500 505 510	
Asn Ile Ala Ala Leu Leu Ser Val Met Leu Gln Pro Tyr Met Pro Thr 515 520 525	
Val Ser Ala Thr Ile Gln Ala Gln Leu Gln Leu Pro Pro Pro Ala Cys 530 535 540	
Ser Ile Leu Leu Thr Asn Phe Leu Cys Thr Leu Pro Ala Gly His Gln 545 550 560	
Ile Gly Thr Val Ser Pro Leu Phe Gln Lys Leu Glu Asn Asp Gln Ile 565 570 575	
Glu Ser Leu Arg Gln Arg Phe Gly Gly Gly Gln Ala Lys Thr Ser Pro 580 585 590	
Lys Pro Ala Val Val Glu Thr Val Thr Thr Ala Lys Pro Gln Gln Ile 595 600 605	
Gln Ala Leu Met Asp Glu Val Thr Lys Gln Gly Asn Ile Val Arg Glu 610 615 620	
Leu Lys Ala Gln Lys Ala Asp Lys Asn Glu Val Ala Ala Glu Val Ala 625 630 635 640	
Lys Leu Leu Asp Leu Lys Lys Gln Leu Ala Val Ala Glu Gly Lys Pro 645 650 655	
Pro Glu Ala Pro Lys Gly Lys Lys Lys 660 665	
<210> SEQ ID NO 142 <211> LENGTH: 2001 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 142	
atggctgtta etgettggga gaagggeeta gaaagtttge eecegetgeg geeceageag 6	60
	20
gtcaacaatg tcccccacct tgggaacatc attggttgtg tgctcagtgc cgatgtcttt 18	80
gccaggtact ctcgcctccg ccagtggaac accctctatc tgtgtgggac agatgagtat 24	40
ggtacagcaa cagagaccaa ggctctggag gagggactaa ccccccagga gatctgcgac 30	00
aagtaccaca tcatccatge tgacatctac egetggttta acatttegtt tgatattttt 36	60
ggtcgcacca ccactccaca gcagaccaaa atcacccagg acattttcca gcagttgctg 42	20
aaacgaggtt ttgtgctgca agatactgtg gagcaactgc gatgtgagca ctgtgctcgc 48	80
tteetggetg accgettegt ggagggegtg tgteeettet gtggetatga ggaggetegg 54	40
ggtgaccagt gtgacaagtg tggcaagctc atcaatgctg tcgagcttaa gaagcctcag 60	00
tgtaaagtct geegateatg eeetgtggtg eagtegagee ageaeetgtt tetggaeetg 66	60

-continued

cctaagctgg agaagcgact ggaggagtgg ttggggagga cattgcctgg cagtgactgg	720	
acacccaatg cccagtttat cacccgttct tggcttcggg atggcctcaa gccacgctgc	780	
ataacccgag acctcaaatg gggaacccct gtacccttag aaggttttga agacaaggta	840	
ttctatgtct ggtttgatgc cactattggc tatctgtcca tcacagccaa ctacacagac	900	
cagtgggaga gatggtggaa gaacccagag caagtggacc tgtatcagtt catggccaaa	960	
gacaatgttc ctttccatag cttagtcttt ccttgctcag ccctaggagc tgaggataac	1020	
tatacettgg teagecacet eattgetaca gagtacetga actatgagga tgggaaatte	1080	
tctaagagcc gcggtgtggg agtgtttggg gacatggccc aggacacggg gatccctgct	1140	
gacatetgge gettetatet getgtacatt eggeetgagg geeaggacag tgetttetee	1200	
tggacggacc tgctgctgaa gaataattct gagctgctta acaacctggg caacttcatc	1260	
aacagagetg ggatgtttgt gtetaagtte tttggggget atgtgeetga gatggtgete	1320	
acccctgatg atcagogoot gotggoocat gtcaccctgg agotccagca ctatcaccag	1380	
ctacttgaga aggtteggat eegggatgee ttgegeagta teeteaceat atetegacat	1440	
ggcaaccaat atattcaggt gaatgagccc tggaagcgga ttaaaggcag tgaggctgac	1500	
aggcaacggg caggaacagt gactggcttg gcagtgaata tagctgcctt gctctctgtc	1560	
atgetteage ettacatgee caeggttagt gecacaatee aggeecaget geageteeca	1620	
cctccagcct gcagtatcct gctgacaaac ttcctgtgta ccttaccagc aggacaccag	1680	
attggcacag tcagtccctt gttccaaaaa ttggaaaatg accagattga aagtttaagg	1740	
cagcgctttg gaggggcca ggcaaaaacg tccccgaagc cagcagttgt agagactgtt	1800	
acaacagcca agccacagca gatacaagcg ctgatggatg aagtgacaaa acaaggaaac	1860	
attgtccgag aactgaaagc acaaaaggca gacaagaacg aggttgctgc ggaggtggcg	1920	
aaactettgg atetaaagaa acagttgget gtagetgagg ggaaaceee tgaageeeet	1980	
aaaggcaaga agaaaaagta a	2001	
<210> SEQ ID NO 143 <211> LENGTH: 647 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEOUENCE: 143		
Met Ser Leu Arg Leu Pro Val Ala Gly Glu Arg Asn Val Leu Ile Thr		
1 5 10 15		
Ser Ala Leu Pro Tyr Val Asn Asn Val Pro His Leu Gly Asn Ile Ile 20 25 30		
Gly Cys Val Leu Ser Ala Asp Val Phe Ala Arg Tyr Ser Arg Leu Arg 35 40 45		
Gln Trp Asn Thr Leu Tyr Leu Cys Gly Thr Asp Glu Tyr Gly Thr Ala 50 55 60		
Thr Glu Thr Lys Ala Leu Glu Glu Gly Leu Thr Pro Gln Glu Ile Cys 65 70 75 80		
Asp Lys Tyr His Ile Ile His Ala Asp Ile Tyr Arg Trp Phe Asn Ile 85 90 95		
Ser Phe Asp Ile Phe Gly Arg Thr Thr Thr Pro Gln Gln Thr Lys Ile		
100 105 110		
Thr Gln Asp Ile Phe Gln Gln Leu Leu Lys Arg Gly Phe Val Leu Gln 115 120 125		

Asp Thr Val Glu Gln Leu Arg Cys Glu His Cys Ala Arg Phe Leu Ala

_	130					135					140				
Asp 145		Phe	Val	Glu	Gly 150		Сув	Pro	Phe	Сув 155		Tyr	Glu	Glu	Ala 160
Arg	Gly	Asp	Gln	Сув 165	Asp	Lys	СЛа	Gly	Lys 170	Leu	Ile	Asn	Ala	Val 175	Glu
Leu	Lys	Lys	Pro 180	Gln	Сув	Lys	Val	Сув 185	Arg	Ser	СЛа	Pro	Val 190	Val	Gln
Ser	Ser	Gln 195	His	Leu	Phe	Leu	Asp 200	Leu	Pro	Lys	Leu	Glu 205	Lys	Arg	Leu
Glu	Glu 210	Trp	Leu	Gly	Arg	Thr 215	Leu	Pro	Gly	Ser	Asp 220	Trp	Thr	Pro	Asn
Ala 225	Gln	Phe	Ile	Thr	Arg 230	Ser	Trp	Leu	Arg	Asp 235	Gly	Leu	Lys	Pro	Arg 240
Cys	Ile	Thr	Arg	Asp 245	Leu	Lys	Trp	Gly	Thr 250	Pro	Val	Pro	Leu	Glu 255	Gly
Phe	Glu	Asp	Lys 260	Val	Phe	Tyr	Val	Trp 265	Phe	Asp	Ala	Thr	Ile 270	Gly	Tyr
Leu	Ser	Ile 275	Thr	Ala	Asn	Tyr	Thr 280	Asp	Gln	Trp	Glu	Arg 285	Trp	Trp	Lys
Asn	Pro 290	Glu	Gln	Val	Asp	Leu 295	Tyr	Gln	Phe	Met	Ala 300	ГÀв	Asp	Asn	Val
Pro 305	Phe	His	Ser	Leu	Val 310	Phe	Pro	Cys	Ser	Ala 315	Leu	Gly	Ala	Glu	Asp 320
Asn	Tyr	Thr	Leu	Val 325	Ser	His	Leu	Ile	Ala 330	Thr	Glu	Tyr	Leu	Asn 335	Tyr
Glu	Asp	Gly	Lys 340	Phe	Ser	Lys	Ser	Arg 345	Gly	Val	Gly	Val	Phe 350	Gly	Asp
Met	Ala	Gln 355	Asp	Thr	Gly	Ile	Pro 360	Ala	Asp	Ile	Trp	Arg 365	Phe	Tyr	Leu
Leu	Tyr 370	Ile	Arg	Pro	Glu	Gly 375	Gln	Asp	Ser	Ala	Phe 380	Ser	Trp	Thr	Asp
Leu 385	Leu	Leu	ГЛа	Asn	Asn 390	Ser	Glu	Leu	Leu	Asn 395	Asn	Leu	Gly	Asn	Phe 400
Ile	Asn	Arg	Ala	Gly 405	Met	Phe	Val	Ser	Lys 410	Phe	Phe	Gly	Gly	Tyr 415	Val
Pro	Glu	Met	Val 420	Leu	Thr	Pro	Asp	Asp 425	Gln	Arg	Leu	Leu	Ala 430	His	Val
Thr	Leu	Glu 435	Leu	Gln	His	Tyr	His 440	Gln	Leu	Leu	Glu	Lys 445	Val	Arg	Ile
Arg	Asp 450	Ala	Leu	Arg	Ser	Ile 455	Leu	Thr	Ile	Ser	Arg 460	His	Gly	Asn	Gln
Tyr 465	Ile	Gln	Val	Asn	Glu 470	Pro	Trp	Lys	Arg	Ile 475	Lys	Gly	Ser	Glu	Ala 480
Asp	Arg	Gln	Arg	Ala 485	Gly	Thr	Val	Thr	Gly 490	Leu	Ala	Val	Asn	Ile 495	Ala
Ala	Leu	Leu	Ser 500	Val	Met	Leu	Gln	Pro 505	Tyr	Met	Pro	Thr	Val 510	Ser	Ala
Thr	Ile	Gln 515	Ala	Gln	Leu	Gln	Leu 520	Pro	Pro	Pro	Ala	Сув 525	Ser	Ile	Leu
Leu	Thr 530	Asn	Phe	Leu	CÀa	Thr 535	Leu	Pro	Ala	Gly	His 540	Gln	Ile	Gly	Thr
Val 545	Ser	Pro	Leu	Phe	Gln 550	Lys	Leu	Glu	Asn	Asp 555	Gln	Ile	Glu	Ser	Leu 560

-continued

Arg Gln Arg Phe Gly Gly Gln Ala Lys Thr Ser Pro Lys Pro Ala 565 570 575 Val Val Glu Thr Val Thr Thr Ala Lys Pro Gln Gln Ile Gln Ala Leu Met Asp Glu Val Thr Lys Gln Gly Asn Ile Val Arg Glu Leu Lys Ala

Gln Lys Ala Asp Lys Asn Glu Val Ala Ala Glu Val Ala Lys Leu Leu

Asp Leu Lys Lys Gln Leu Ala Val Ala Glu Gly Lys Pro Pro Glu Ala

Pro Lys Gly Lys Lys Lys

<210> SEQ ID NO 144 <211> LENGTH: 1944

<212> TYPE: DNA

<213 > ORGANISM: Homo sapiens

<400> SEQUENCE: 144

atqaqcctqa qqttqcctqt qqctqqaqaa aqqaatqtqc tcatcaccaq tqccctccct tacqtcaaca atqtccccca ccttqqqaac atcattqqtt qtqtqctcaq tqccqatqtc 120 tttqccaqqt actctcqcct ccqccaqtqq aacaccctct atctqtqtqq qacaqatqaq 180 tatqqtacaq caacaqaqac caaqqctctq qaqqaqqqac taacccccca qqaqatctqc 240 gacaagtacc acatcatcca tgctgacatc taccgctggt ttaacatttc gtttgatatt 300 tttggtcgca ccaccactcc acagcagacc aaaatcaccc aggacatttt ccagcagttg 360 ctgaaacgag gttttgtgct gcaagatact gtggagcaac tgcgatgtga gcactgtgct 420 cgcttcctgg ctgaccgctt cgtggagggc gtgtgtccct tctgtggcta tgaggaggct 480 cggggtgacc agtgtgacaa gtgtggcaag ctcatcaatg ctgtcgagct taagaagcct 540 cagtgtaaag tetgeegate atgeeetgtg gtgeagtega geeageacet gtttetggae 600 ctgcctaagc tggagaagcg actggaggag tggttgggga ggacattgcc tggcagtgac 660 tggacaccca atgcccagtt tatcacccgt tcttggcttc gggatggcct caagccacgc 720 780 tgcataaccc gagacctcaa atggggaacc cctgtaccct tagaaggttt tgaagacaag gtattotatg totggtttga tgocactatt ggotatotgt coatcacago caactacaca gaccagtggg agagatggtg gaagaaccca gagcaagtgg acctgtatca gttcatggcc aaagacaatg ttcctttcca tagcttagtc tttccttgct cagccctagg agctgaggat aactatacct tggtcagcca cctcattgct acagagtacc tgaactatga ggatgggaaa 1080 ttctctaaqa qccqcqqtqt qqqaqtqttt qqqqacatqq cccaqqacac qqqqatccct gctgacatct ggcgcttcta tctgctgtac attcggcctg agggccagga cagtgctttc 1140 teetggaegg acetgetget gaagaataat tetgagetge ttaacaacet gggeaactte 1200 atcaacagag ctgggatgtt tgtgtctaag ttctttgggg gctatgtgcc tgagatggtg 1260 1320 ctcacccctg atgatcageg cctgctggcc catgtcaccc tggagctcca gcactatcac cagetacttg agaaggtteg gateegggat geettgegea gtateeteac catatetega 1380 catggcaacc aatatattca ggtgaatgag ccctggaagc ggattaaagg cagtgaggct 1440 gacaggcaac gggcaggaac agtgactggc ttggcagtga atatagctgc cttgctctct 1500 gtcatgcttc agccttacat gcccacggtt agtgccacaa tccaggccca gctgcagctc

											-	con	LIII	uea		
cca	cctcc	cag o	cctg	cagta	at co	ctgct	gaca	a aad	ette	ctgt	gtad	cctta	acc .	agcaç	ggacac	1620
cag	attgg	gca d	cagto	cagto	ee et	tgti	ccaa	a aaa	attgg	gaaa	atga	acca	gat ·	tgaaa	agttta	1680
agg	cagco	get t	tgga	agggg	gg co	caggo	caaaa	a acç	gteed	ccga	agco	cagca	agt '	tgtaç	gagact	1740
gtt	acaad	cag o	ccaaç	gccad	ca go	cagat	cacaa	a gcg	getga	atgg	atga	agt	gac .	aaaa	caagga	1800
aac	attgt	cc g	gagaa	actga	aa aq	gcaca	aaaaq	g gca	agaca	aaga	acga	aggti	gc ·	tgcg	gaggtg	1860
gcg	aaact	ct t	ggat	ctaa	aa ga	aaaca	agtto	g gct	gtag	gctg	aggg	ggaaa	acc ·	ccct	gaagcc	1920
cct	aaagg	gca a	agaaq	gaaaa	aa gt	caa										1944
<21 <21	0 > SI 1 > LI 2 > TY 3 > OF	ENGTH	1: 83 PRT	32	sa <u>r</u>	piens	3									
< 40	0> SI	EQUE	ICE :	145												
Met 1	Arg	Leu	Phe	Val 5	Ser	Asp	Gly	Val	Pro 10	Gly	CÀa	Leu	Pro	Val 15	Leu	
	Ala		20					25					30			
Val	Gly	Pro 35	Glu	Asp	CAa	Val	Val 40	Pro	Phe	Leu	Thr	Arg 45	Pro	ГÀа	Val	
Pro	Val 50	Leu	Gln	Leu	Asp	Ser 55	Gly	Asn	Tyr	Leu	Phe 60	Ser	Thr	Ser	Ala	
Ile 65	CÀa	Arg	Tyr	Phe	Phe 70	Leu	Leu	Ser	Gly	Trp 75	Glu	Gln	Asp	Asp	Leu 80	
Thr	Asn	Gln	Trp	Leu 85	Glu	Trp	Glu	Ala	Thr 90	Glu	Leu	Gln	Pro	Ala 95	Leu	
Ser	Ala	Ala	Leu 100	Tyr	Tyr	Leu	Val	Val 105	Gln	Gly	Lys	rys	Gly 110	Glu	Asp	
Val	Leu	Gly 115	Ser	Val	Arg	Arg	Ala 120	Leu	Thr	His	Ile	Asp 125	His	Ser	Leu	
Ser	Arg 130	Gln	Asn	Cys	Pro	Phe 135	Leu	Ala	Gly	Glu	Thr 140	Glu	Ser	Leu	Ala	
Asp 145	Ile	Val	Leu	Trp	Gly 150	Ala	Leu	Tyr	Pro	Leu 155	Leu	Gln	Asp	Pro	Ala 160	
Tyr	Leu	Pro	Glu	Glu 165	Leu	Ser	Ala	Leu	His 170	Ser	Trp	Phe	Gln	Thr 175	Leu	
Ser	Thr	Gln	Glu 180	Pro	CAa	Gln	Arg	Ala 185	Ala	Glu	Thr	Val	Leu 190	ГÀа	Gln	
Gln	Gly	Val 195	Leu	Ala	Leu	Arg	Pro 200	Tyr	Leu	Gln	Lys	Gln 205	Pro	Gln	Pro	
Ser	Pro 210	Ala	Glu	Gly	Arg	Ala 215	Val	Thr	Asn	Glu	Pro 220	Glu	Glu	Glu	Glu	
Leu 225	Ala	Thr	Leu	Ser	Glu 230	Glu	Glu	Ile	Ala	Met 235	Ala	Val	Thr	Ala	Trp 240	
Glu	ГЛа	Gly	Leu	Glu 245	Ser	Leu	Pro	Pro	Leu 250	Arg	Pro	Gln	Gln	Asn 255	Pro	
Val	Leu	Pro	Val 260	Ala	Gly	Glu	Arg	Asn 265	Val	Leu	Ile	Thr	Ser 270	Ala	Leu	
Pro	Tyr	Val 275	Asn	Asn	Val	Pro	His 280	Leu	Gly	Asn	Ile	Ile 285	Gly	Сув	Val	
Leu	Ser 290	Ala	Asp	Val	Phe	Ala 295	Arg	Ile	Thr	Gln	Asp 300	Ile	Phe	Gln	Gln	

Leu 305	Leu	Lys	Arg	Gly	Phe 310	Val	Leu	Gln	Asp	Thr 315	Val	Glu	Gln	Leu	Arg 320
Cys	Glu	His	Cys	Ala 325	Arg	Phe	Leu	Ala	330	Arg	Phe	Val	Glu	Gly 335	Val
Сув	Pro	Phe	Cys 340	Gly	Tyr	Glu	Glu	Ala 345	Arg	Gly	Asp	Gln	Сув 350	Asp	Lys
Cys	Gly	Lys 355	Leu	Ile	Asn	Ala	Val 360	Glu	Leu	Lys	Lys	Pro 365	Gln	Cys	Lys
Val	Cys 370	Arg	Ser	Cys	Pro	Val 375	Val	Gln	Ser	Ser	Gln 380	His	Leu	Phe	Leu
Asp 385	Leu	Pro	Lys	Leu	Glu 390	Lys	Arg	Leu	Glu	Glu 395	Trp	Leu	Gly	Arg	Thr 400
Leu	Pro	Gly	Ser	Asp 405	Trp	Thr	Pro	Asn	Ala 410	Gln	Phe	Ile	Thr	Arg 415	Ser
Trp	Leu	Arg	Asp 420	Gly	Leu	Lys	Pro	Arg 425	Cys	Ile	Thr	Arg	Asp 430	Leu	Lys
Trp	Gly	Thr 435	Pro	Val	Pro	Leu	Glu 440	Gly	Phe	Glu	Asp	Lys 445	Val	Phe	Tyr
Val	Trp 450	Phe	Asp	Ala	Thr	Ile 455	Gly	Tyr	Leu	Ser	Ile 460	Thr	Ala	Asn	Tyr
Thr 465	Asp	Gln	Trp	Glu	Arg 470	Trp	Trp	Lys	Asn	Pro 475	Glu	Gln	Val	Asp	Leu 480
Tyr	Gln	Phe	Met	Ala 485	Lys	Asp	Asn	Val	Pro 490	Phe	His	Ser	Leu	Val 495	Phe
Pro	Cys	Ser	Ala 500	Leu	Gly	Ala	Glu	Asp 505	Asn	Tyr	Thr	Leu	Val 510	Ser	His
Leu	Ile	Ala 515	Thr	Glu	Tyr	Leu	Asn 520	Tyr	Glu	Asp	Gly	Lys 525	Phe	Ser	Lys
Ser	Arg 530	Gly	Val	Gly	Val	Phe 535	Gly	Asp	Met	Ala	Gln 540	Asp	Thr	Gly	Ile
Pro 545	Ala	Asp	Ile	Trp	Arg 550	Phe	Tyr	Leu	Leu	Tyr 555	Ile	Arg	Pro	Glu	Gly 560
Gln	Asp	Ser	Ala	Phe 565	Ser	Trp	Thr	Asp	Leu 570	Leu	Leu	Lys	Asn	Asn 575	Ser
Glu	Leu	Leu	Asn 580	Asn	Leu	Gly	Asn	Phe 585	Ile	Asn	Arg	Ala	Gly 590	Met	Phe
Val	Ser	Lys 595	Phe	Phe	Gly	Gly	Tyr 600	Val	Pro	Glu	Met	Val 605	Leu	Thr	Pro
Asp	Asp 610	Gln	Arg	Leu	Leu	Ala 615	His	Val	Thr	Leu	Glu 620	Leu	Gln	His	Tyr
His 625	Gln	Leu	Leu	Glu	630	Val	Arg	Ile	Arg	Asp 635	Ala	Leu	Arg	Ser	Ile 640
Leu	Thr	Ile	Ser	Arg 645	His	Gly	Asn	Gln	Tyr 650	Ile	Gln	Val	Asn	Glu 655	Pro
Trp	Lys	Arg	Ile 660	Lys	Gly	Ser	Glu	Ala 665	Asp	Arg	Gln	Arg	Ala 670	Gly	Thr
Val	Thr	Gly 675	Leu	Ala	Val	Asn	Ile 680	Ala	Ala	Leu	Leu	Ser 685	Val	Met	Leu
Gln	Pro 690	Tyr	Met	Pro	Thr	Val 695	Ser	Ala	Thr	Ile	Gln 700	Ala	Gln	Leu	Gln
Leu 705	Pro	Pro	Pro	Ala	Cys 710	Ser	Ile	Leu	Leu	Thr 715	Asn	Phe	Leu	Cys	Thr 720
Leu	Pro	Ala	Gly	His	Gln	Ile	Gly	Thr	Val	Ser	Pro	Leu	Phe	Gln	ГХа

	725		730		735
Leu Glu A	Asn Asp Gln 740	Ile Glu Se	r Leu Arg Gln 745	Arg Phe Gly 750	Gly Gly
	ys Thr Ser 755	Pro Lys Pro	o Ala Val Val	Glu Thr Val 765	Thr Thr
Ala Lys P 770	ro Gln Gln	Ile Gln Al	a Leu Met Asp	Glu Val Thr 780	Lys Gln
Gly Asn I 785	le Val Arg	Glu Leu Ly 790	s Ala Gln Lys 795	Ala Asp Lys	Asn Glu 800
Val Ala A	Ala Glu Val 805	Ala Lys Le	ı Leu Asp Leu 810	Lys Lys Gln	Leu Ala 815
Val Ala G	Glu Gly Lys 820	Pro Pro Gl	ı Ala Pro Lys 825	Gly Lys Lys 830	rva rva

<210> SEQ ID NO 146

<211> LENGTH: 2499

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 146

60 atgagactqt tcqtqaqtqa tqqcqtcccq qqttqcttqc cqqtqctqqc cqccqcqqq agagcccggg gcagagcaga ggtgctcatc agcactgtag gcccggaaga ttgtgtggtc 120 ccgttcctga cccggcctaa ggtccctgtc ttgcagctgg atagcggcaa ctacctcttc 180 tccactagtg caatctgccg atatttttt ttgttatctg gctgggagca agatgacctc 240 actaaccagt ggctggaatg ggaagcgaca gagctgcagc cagctttgtc tgctgccctg 300 tactatttag tggtccaagg caagaagggg gaagatgttc ttggttcagt gcggagagcc 360 ctgactcaca ttgaccacag cttgagtcgt cagaactgtc ctttcctggc tggggagaca 420 gaatetetag eegacattgt tttgtgggga geeetatace cattactgea agateeegee 480 tacctccctg aggagetgag tgccctgcac agctggttcc agacactgag tacccaggaa 540 ccatgtcagc gagctgcaga gactgtactg aaacagcaag gtgtcctggc tctccggcct 600 tacctccaaa agcagcccca gcccagcccc gctgagggaa gggctgtcac caatgagcct 660 gaggaggagg agctggctac cctatctgag gaggagattg ctatggctgt tactgcttgg 720 gagaagggcc tagaaagttt gcccccgctg cggccccagc agaatccagt gttgcctgtg 780 840 gctggagaaa ggaatgtgct catcaccagt gccctccctt acgtcaacaa tgtcccccac cttgggaaca tcattggttg tgtgctcagt gccgatgtct ttgccagaat cacccaggac 900 attttccagc agttgctgaa acgaggtttt gtgctgcaag atactgtgga gcaactgcga 960 tgtgagcaet gtgetegett cetggetgae egettegtgg agggegtgtg tecettetgt ggctatgagg aggctcgggg tgaccagtgt gacaagtgtg gcaagctcat caatgctgtc 1080 qaqcttaaqa aqcctcaqtq taaaqtctqc cqatcatqcc ctqtqqtqca qtcqaqccaq 1140 cacctgtttc tggacctgcc taagctggag aagcgactgg aggagtggtt ggggaggaca 1200 ttgcctggca gtgactggac acccaatgcc cagtttatca cccgttcttg gcttcgggat ggcctcaagc cacgctgcat aacccgagac ctcaaatggg gaacccctgt acccttagaa 1320 ggttttgaag acaaggtatt ctatgtctgg tttgatgcca ctattggcta tctgtccatc 1380 1440 acaqccaact acacaqacca qtqqqaqaqa tqqtqqaaqa acccaqaqca aqtqqacctq tatcagttca tggccaaaga caatgttcct ttccatagct tagtctttcc ttgctcagcc 1500 ctaggagctg aggataacta taccttggtc agccacctca ttgctacaga gtacctgaac 1560

tatgaggatg	ggaaattctc	taagagccgc	ggtgtgggag	tgtttgggga	catggcccag	1620
gacacgggga	tecetgetga	catctggcgc	ttctatctgc	tgtacattcg	gcctgagggc	1680
caggacagtg	ctttctcctg	gacggacctg	ctgctgaaga	ataattctga	gctgcttaac	1740
aacctgggca	acttcatcaa	cagagetggg	atgtttgtgt	ctaagttctt	tgggggctat	1800
gtgcctgaga	tggtgctcac	ccctgatgat	cagegeetge	tggcccatgt	caccctggag	1860
ctccagcact	atcaccagct	acttgagaag	gttcggatcc	gggatgcctt	gcgcagtatc	1920
ctcaccatat	ctcgacatgg	caaccaatat	attcaggtga	atgagccctg	gaageggatt	1980
aaaggcagtg	aggetgaeag	gcaacgggca	ggaacagtga	ctggcttggc	agtgaatata	2040
getgeettge	tetetgteat	gcttcagcct	tacatgccca	cggttagtgc	cacaatccag	2100
gcccagctgc	ageteceace	tccagcctgc	agtateetge	tgacaaactt	cctgtgtacc	2160
ttaccagcag	gacaccagat	tggcacagtc	agtcccttgt	tccaaaaatt	ggaaaatgac	2220
cagattgaaa	gtttaaggca	gegetttgga	gggggccagg	caaaaacgtc	cccgaagcca	2280
gcagttgtag	agactgttac	aacagccaag	ccacagcaga	tacaagcgct	gatggatgaa	2340
gtgacaaaac	aaggaaacat	tgtccgagaa	ctgaaagcac	aaaaggcaga	caagaacgag	2400
gttgctgcgg	aggtggcgaa	actcttggat	ctaaagaaac	agttggctgt	agctgagggg	2460
aaaccccctg	aagcccctaa	aggcaagaag	aaaaagtaa			2499

<210> SEQ ID NO 147

<211> LENGTH: 875 <212> TYPE: PRT

<212> TIPE: PRI <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 147

Met Arg Leu Phe Val Ser Asp Gly Val Pro Gly Cys Leu Pro Val Leu 1 $$ 5 $$ 10 $$ 15

Ala Ala Ala Gly Arg Ala Arg Gly Arg Ala Glu Val Leu Ile Ser Thr 202530

Val Gly Pro Glu Asp Cys Val Val Pro Phe Leu Thr Arg Pro Lys Val 35 40 45

Pro Val Leu Gln Leu Asp Ser Gly Asn Tyr Leu Phe Ser Thr Ser Ala 50 $\,$ 60

Ile Cys Arg Tyr Phe Phe Leu Leu Ser Gly Trp Glu Gln Asp Asp Leu 65 70 75 80

Thr Asn Gln Trp Leu Glu Trp Glu Ala Thr Glu Leu Gln Pro Ala Leu
85 90 95

Ser Ala Ala Leu Tyr Tyr Leu Val Val Gln Gly Lys Lys Gly Glu Asp 100 105 110

Val Leu Gly Ser Val Arg Arg Ala Leu Thr His Ile Asp His Ser Leu \$115\$ \$120\$ \$125\$

Ser Arg Gln Asn Cys Pro Phe Leu Ala Gly Glu Thr Glu Ser Leu Ala 130 135 140

Tyr Leu Pro Glu Glu Leu Ser Ala Leu His Ser Trp Phe Gln Thr Leu 165 170 175

Ser Thr Gln Glu Pro Cys Gln Arg Ala Ala Glu Thr Val Leu Lys Gln \$180\$

Gln Gly Val Leu Ala Leu Arg Pro Tyr Leu Gln Lys Gln Pro Gln Pro 195 200 205

Ser	Pro 210	Ala	Glu	Gly	Arg	Ala 215	Val	Thr	Asn	Glu	Pro 220	Glu	Glu	Glu	Glu
Leu 225	Ala	Thr	Leu	Ser	Glu 230	Glu	Glu	Ile	Ala	Met 235	Ala	Val	Thr	Ala	Trp 240
Glu	Lys	Gly	Leu	Glu 245	Ser	Leu	Pro	Pro	Leu 250	Arg	Pro	Gln	Gln	Asn 255	Pro
Val	Leu	Pro	Val 260	Ala	Gly	Glu	Arg	Asn 265	Val	Leu	Ile	Thr	Ser 270	Ala	Leu
Pro	Tyr	Val 275	Asn	Asn	Val	Pro	His 280	Leu	Gly	Asn	Ile	Ile 285	Gly	Сув	Val
Leu	Ser 290	Ala	Asp	Val	Phe	Ala 295	Arg	Tyr	Ser	Arg	Leu 300	Arg	Gln	Trp	Asn
Thr 305	Leu	Tyr	Leu	Cys	Gly 310	Thr	Asp	Glu	Tyr	Gly 315	Thr	Ala	Thr	Glu	Thr 320
ГÀа	Ala	Leu	Glu	Glu 325	Gly	Leu	Thr	Pro	Gln 330	Glu	Ile	CÀa	Asp	335 1	Tyr
His	Ile	Ile	His 340	Ala	Asp	Ile	Tyr	Arg 345	Trp	Phe	Asn	Ile	Ser 350	Phe	Asp
Ile	Phe	Gly 355	Arg	Thr	Thr	Thr	Pro 360	Gln	Gln	Thr	Lys	Ile 365	Thr	Gln	Asp
Ile	Phe 370	Gln	Gln	Leu	Leu	Lys 375	Arg	Gly	Phe	Val	Leu 380	Gln	Asp	Thr	Val
Glu 385	Gln	Leu	Arg	CÀa	Glu 390	His	CÀa	Ala	Arg	Phe 395	Leu	Ala	Asp	Arg	Phe 400
Val	Glu	Gly	Val	Сув 405	Pro	Phe	Cys	Gly	Tyr 410	Glu	Glu	Ala	Arg	Gly 415	Asp
Gln	Cys	Asp	Lys 420	СЛа	Gly	Lys	Leu	Ile 425	Asn	Ala	Val	Glu	Leu 430	ГÀз	Leu
Glu	Lys	Arg 435	Leu	Glu	Glu	Trp	Leu 440	Gly	Arg	Thr	Leu	Pro 445	Gly	Ser	Asp
Trp	Thr 450	Pro	Asn	Ala	Gln	Phe 455	Ile	Thr	Arg	Ser	Trp 460	Leu	Arg	Asp	Gly
Leu 465	Lys	Pro	Arg	Cys	Ile 470	Thr	Arg	Asp	Leu	Lys 475	Trp	Gly	Thr	Pro	Val 480
Pro	Leu	Glu	Gly	Phe 485	Glu	Asp	Lys	Val	Phe 490	Tyr	Val	Trp	Phe	Asp 495	Ala
Thr	Ile	Gly	Tyr 500	Leu	Ser	Ile	Thr	Ala 505	Asn	Tyr	Thr	Asp	Gln 510	Trp	Glu
Arg	Trp	Trp 515	ГÀа	Asn	Pro	Glu	Gln 520	Val	Asp	Leu	Tyr	Gln 525	Phe	Met	Ala
ràa	Asp 530	Asn	Val	Pro	Phe	His 535	Ser	Leu	Val	Phe	Pro 540	CÀa	Ser	Ala	Leu
Gly 545	Ala	Glu	Asp	Asn	Tyr 550	Thr	Leu	Val	Ser	His 555	Leu	Ile	Ala	Thr	Glu 560
Tyr	Leu	Asn	Tyr	Glu 565	Asp	Gly	Lys	Phe	Ser 570	Lys	Ser	Arg	Gly	Val 575	Gly
Val	Phe	Gly	Asp 580	Met	Ala	Gln	Asp	Thr 585	Gly	Ile	Pro	Ala	Asp 590	Ile	Trp
Arg	Phe	Tyr 595	Leu	Leu	Tyr	Ile	Arg 600	Pro	Glu	Gly	Gln	Asp 605	Ser	Ala	Phe
Ser	Trp 610	Thr	Asp	Leu	Leu	Leu 615	Lys	Asn	Asn	Ser	Glu 620	Leu	Leu	Asn	Asn

-continued

Leu 625	Gly	Asn	Phe	Ile	Asn 630	Arg	Ala	Gly	Met	Phe 635	Val	Ser	Lys	Phe	Phe 640	
Gly	Gly	Tyr	Val	Pro 645	Glu	Met	Val	Leu	Thr 650	Pro	Asp	Asp	Gln	Arg 655	Leu	
Leu	Ala	His	Val 660	Thr	Leu	Glu	Leu	Gln 665	His	Tyr	His	Gln	Leu 670	Leu	Glu	
Lys	Val	Arg 675	Ile	Arg	Asp	Ala	Leu 680	Arg	Ser	Ile	Leu	Thr 685	Ile	Ser	Arg	
His	Gly 690	Asn	Gln	Tyr	Ile	Gln 695	Val	Asn	Glu	Pro	Trp 700	Lys	Arg	Ile	Lys	
Gly 705	Ser	Glu	Ala	Asp	Arg 710	Gln	Arg	Ala	Gly	Thr 715	Val	Thr	Gly	Leu	Ala 720	
Val	Asn	Ile	Ala	Ala 725	Leu	Leu	Ser	Val	Met 730	Leu	Gln	Pro	Tyr	Met 735	Pro	
Thr	Val	Ser	Ala 740	Thr	Ile	Gln	Ala	Gln 745	Leu	Gln	Leu	Pro	Pro 750	Pro	Ala	
Cys	Ser	Ile 755	Leu	Leu	Thr	Asn	Phe	Leu	Cys	Thr	Leu	Pro 765	Ala	Gly	His	
Gln	Ile 770	Gly	Thr	Val	Ser	Pro 775	Leu	Phe	Gln	Lys	Leu 780	Glu	Asn	Asp	Gln	
Ile 785		Ser	Leu	Arg	Gln 790		Phe	Gly	Gly	Gly 795		Ala	Lys	Thr	Ser 800	
	Lys	Pro	Ala	Val 805		Glu	Thr	Val	Thr		Ala	Lys	Pro	Gln 815		
Ile	Gln	Ala	Leu 820		Asp	Glu	Val	Thr 825		Gln	Gly	Asn	Ile 830	Val	Arg	
Glu	Leu	Lys 835		Gln	rys	Ala	Asp		Asn	Glu	Val	Ala 845		Glu	Val	
Ala			Leu	Asp	Leu	-		Gln	Leu	Ala			Glu	Gly	Lys	
Pro	850 Pro	Glu	Ala	Pro	-	855 Gly	ГЛа	Lys	Lys	Lys 875	860					
865					870					8/5						
<21 <21	0> SI 1> LI 2> T 3> OI	ENGTI PE :	H: 20 DNA	628	o sai	oiens	g									
	0> SI				•											
					ga to	ggcgt	taaag	g ggt	tgct	tgc	cggt	gct	ggc (egeeç	gccggg	60
aga	gaaa	999 9	gcaga	agcaç	ga g	gtgct	tcato	c ago	cacto	gtag	gcc	cggaa	aga 1	ttgtg	gtggtc	120
ccg.	ttcct	ga d	cccg	geeta	aa g	gtcc	ctgto	tte	gcago	ctgg	ataç	gegge	caa «	ctaco	etette	180
tcc	actaç	gtg (caat	ctgc	cg at	atti	tttt	tte	gttat	ctg	gct	ggga	gca a	agato	gacete	240
act	aacca	agt q	ggct	ggaat	g g	gaago	cgaca	a gaç	gctgo	cagc	cago	ettt	gtc 1	tgata	gccctg	300
tac	tatt	ag t	tggt	ccaaç	gg ca	aagaa	agggg	g gaa	agato	gttc	ttg	gttca	agt 🤅	gegga	agagcc	360
ctg	actca	aca t	ttga	ccaca	ag ct	tgaç	gtcgt	caç	gaact	gtc	cttt	cct	ggc 1	gggg	gagaca	420
gaa	tctct	ag o	ccga	catt	gt ti	tgt	9999a	a gco	cctat	acc	catt	act	gca a	agato	cccgcc	480
tac	ctcc	ctg a	agga	gctga	ag to	gaaat	tgcad	c ago	ctggt	tcc	agad	cact	gag 1	tacco	caggaa	540
cca	tgtca	agc (gagci	tgca	ga ga	actgt	tacto	g aaa	acago	caag	gtgt	cct	ggc 1	tctc	eggeet	600
tac	eteca	aaa a	agca	gece	ca go	ccaç	gccc	c gct	gagg	ggaa	999	ctgt	cac o	caato	gagcct	660
																700

gaggaggagg agctggctac cctatctgag gaggagattg ctatggctgt tactgcttgg

720

gagaagggcc	tagaaagttt	gcccccgctg	cggccccagc	agaatccagt	gttgcctgtg	780
gctggagaaa	ggaatgtgct	catcaccagt	gecetecett	acgtcaacaa	tgtcccccac	840
cttgggaaca	tcattggttg	tgtgctcagt	gccgatgtct	ttgccaggta	ctctcgcctc	900
cgccagtgga	acaccctcta	tetgtgtggg	acagatgagt	atggtacagc	aacagagacc	960
aaggctctgg	aggagggact	aaccccccag	gagatetgeg	acaagtacca	catcatccat	1020
gctgacatct	accgctggtt	taacatttcg	tttgatattt	ttggtcgcac	caccactcca	1080
cagcagacca	aaatcaccca	ggacattttc	cagcagttgc	tgaaacgagg	ttttgtgctg	1140
caagatactg	tggagcaact	gcgatgtgag	cactgtgctc	getteetgge	tgaccgcttc	1200
gtggagggcg	tgtgtccctt	ctgtggctat	gaggaggete	ggggtgacca	gtgtgacaag	1260
tgtggcaagc	tcatcaatgc	tgtcgagctt	aagctggaga	agcgactgga	ggagtggttg	1320
gggaggacat	tgcctggcag	tgactggaca	cccaatgccc	agtttatcac	ccgttcttgg	1380
cttcgggatg	gcctcaagcc	acgctgcata	acccgagacc	tcaaatgggg	aacccctgta	1440
cccttagaag	gttttgaaga	caaggtattc	tatgtctggt	ttgatgccac	tattggctat	1500
ctgtccatca	cagccaacta	cacagaccag	tgggagagat	ggtggaagaa	cccagagcaa	1560
gtggacctgt	atcagttcat	ggccaaagac	aatgttcctt	tccatagctt	agtctttcct	1620
tgctcagccc	taggagctga	ggataactat	accttggtca	gccacctcat	tgctacagag	1680
tacctgaact	atgaggatgg	gaaattctct	aagageegeg	gtgtgggagt	gtttggggac	1740
atggcccagg	acacggggat	ccctgctgac	atctggcgct	tctatctgct	gtacattcgg	1800
cctgagggcc	aggacagtgc	ttteteetgg	acggacctgc	tgctgaagaa	taattctgag	1860
ctgcttaaca	acctgggcaa	cttcatcaac	agagctggga	tgtttgtgtc	taagttcttt	1920
gggggctatg	tgcctgagat	ggtgctcacc	cctgatgatc	agegeetget	ggcccatgtc	1980
accctggagc	tccagcacta	tcaccagcta	cttgagaagg	ttcggatccg	ggatgccttg	2040
cgcagtatcc	tcaccatatc	tcgacatggc	aaccaatata	ttcaggtgaa	tgagccctgg	2100
aagcggatta	aaggcagtga	ggctgacagg	caacgggcag	gaacagtgac	tggcttggca	2160
gtgaatatag	ctgccttgct	ctctgtcatg	cttcagcctt	acatgcccac	ggttagtgcc	2220
acaatccagg	cccagctgca	geteceacet	ccagcctgca	gtatcctgct	gacaaacttc	2280
ctgtgtacct	taccagcagg	acaccagatt	ggcacagtca	gtcccttgtt	ccaaaaattg	2340
gaaaatgacc	agattgaaag	tttaaggcag	cgctttggag	ggggccaggc	aaaaacgtcc	2400
ccgaagccag	cagttgtaga	gactgttaca	acagccaagc	cacagcagat	acaagcgctg	2460
atggatgaag	tgacaaaaca	aggaaacatt	gtccgagaac	tgaaagcaca	aaaggcagac	2520
aagaacgagg	ttgctgcgga	ggtggcgaaa	ctcttggatc	taaagaaaca	gttggctgta	2580
gctgagggga	aaccccctga	agcccctaaa	ggcaagaaga	aaaagtaa		2628
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN	TH: 50 : DNA NISM: Homo :	sapiens				

tcttctccac tagtgcaatc tgccggtatt ctatgtctgg tttgatgcca

<210> SEQ ID NO 150 <211> LENGTH: 50 <212> TYPE: DNA

<400> SEQUENCE: 149

```
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 150
gcaccaccac tccacagcag accaaaagcc tcagtgtaaa gtctgccgat
                                                                      50
<210> SEQ ID NO 151
<211> LENGTH: 50
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 151
gagatggtgg aagaacccag agcaaagtac ctgaactatg aggatgggaa
                                                                      50
<210> SEQ ID NO 152
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 152
Met Val Glu Glu Pro Arg Ala Lys Tyr Leu Asn Tyr Glu Asp Gly
<210> SEQ ID NO 153
<211> LENGTH: 50
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 153
ggattaaagg cagtgaggct gacaggtcag tcccttgttc caaaaattgg
                                                                      50
<210> SEQ ID NO 154
<211> LENGTH: 50
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 154
ctcatcagca ctgtaggccc ggaagaggag ctgagtgccc tgcacagctg
                                                                      50
<210> SEQ ID NO 155
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 155
Leu Ile Ser Thr Val Gly Pro Glu Glu Glu Leu Ser Ala Leu His Ser
<210> SEQ ID NO 156
<211> LENGTH: 50
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 156
tettetecae tagtgeaate tgeegaggag etgagtgeee tgeacagetg
                                                                     50
<210> SEQ ID NO 157
<211> LENGTH: 50
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 157
aagggetgte accaatgage etgaggttge etgtggetgg agaaaggaat
                                                                      50
```

```
<210> SEQ ID NO 158
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 158
Gly Leu Ser Pro Met Ser Leu Arg Leu Pro Val Ala Gly Glu Arg Asn
<210> SEQ ID NO 159
<211> LENGTH: 50
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 159
tgctcagtgc cgatgtcttt gccagaatca cccaggacat tttccagcag
<210> SEQ ID NO 160
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 160
Leu Ser Ala Asp Val Phe Ala Arg Ile Thr Gln Asp Ile Phe Gln Gln
               5
<210> SEQ ID NO 161
<211> LENGTH: 50
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 161
gctcatcaat gctgtcgagc ttaagctgga gaagcgactg gaggagtggt
                                                                      50
<210> SEQ ID NO 162
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 162
Leu Ile Asn Ala Val Glu Leu Lys Leu Glu Lys Arg Leu Glu Glu Trp
       5
<210> SEQ ID NO 163
<211> LENGTH: 128
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 163
Leu Pro Pro Pro Ala Cys Ser Ile Leu Leu Thr Asn Phe Leu Cys Thr
Leu Pro Ala Gly His Gln Ile Gly Thr Val Ser Pro Leu Phe Gln Lys
Leu Glu Asn Asp Gln Ile Glu Ser Leu Arg Gln Arg Phe Gly Gly
                            40
Gln Ala Lys Thr Ser Pro Lys Pro Ala Val Val Glu Thr Val Thr Thr
                       55
Ala Lys Pro Gln Gln Ile Gln Ala Leu Met Asp Glu Val Thr Lys Gln
Gly Asn Ile Val Arg Glu Leu Lys Ala Gl<br/>n Lys Ala Asp Lys Asn Glu \,
                                    90
Val Ala Ala Glu Val Ala Lys Leu Leu Asp Leu Lys Lys Gln Leu Ala
```

-continued

Met Leu Pro Pro Pro Ala Cys Ser Ile Leu Leu Thr Asn Phe Leu Cys Thr Leu Pro Ala Gly His Gln Ile Gly Thr Val Ser Pro Leu Phe Gln Lys Leu Glu Asn Asp Gln Ile Glu Ser Leu Arg Gln Arg Phe Gly Gly Gly Gln Ala Lys Thr Ser Pro Lys Pro Ala Val Val Glu Thr Val Thr Thr Ala Lys Pro Gln Gln Ile Gln Ala Leu Met Asp Glu Val Thr Lys Gln Gly Asn Ile Val Arg Glu Leu Lys Ala Gln Lys Ala Asp Lys Asn Glu Val Ala Ala Glu Val Ala Lys Leu Leu Asp Leu Lys Lys Gln Leu Ala Val Ala Glu Gly Lys Pro Pro Glu Ala Pro Lys Gly Lys Lys Lys Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr His $130 \ 135 \ 140$ His His His His 145 <210> SEQ ID NO 167 <211> LENGTH: 369 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with N-terminal 6xHis affinity tag <400> SEQUENCE: 167 Met His His His His His Gly Lys Pro Ile Pro Asn Pro Leu Leu 10 Gly Leu Asp Ser Thr Ala Lys Asp Asn Val Pro Phe His Ser Leu Val Phe Pro Cys Ser Ala Leu Gly Ala Glu Asp Asn Tyr Thr Leu Val Ser His Leu Ile Ala Thr Glu Tyr Leu Asn Tyr Glu Asp Gly Lys Phe Ser Lys Ser Arg Gly Val Gly Val Phe Gly Asp Met Ala Gln Asp Thr Gly Ile Pro Ala Asp Ile Trp Arg Phe Tyr Leu Leu Tyr Ile Arg Pro Glu Gly Gln Asp Ser Ala Phe Ser Trp Thr Asp Leu Leu Leu Lys Asn Asn Ser Glu Leu Leu Asn Asn Leu Gly Asn Phe Ile Asn Arg Ala Gly Met Phe Val Ser Lys Phe Phe Gly Gly Tyr Val Pro Glu Met Val Leu Thr Pro Asp Asp Gln Arg Leu Leu Ala His Val Thr Leu Glu Leu Gln His 150 Tyr His Gln Leu Leu Glu Lys Val Arg Ile Arg Asp Ala Leu Arg Ser Ile Leu Thr Ile Ser Arg His Gly Asn Gln Tyr Ile Gln Val Asn Glu 185 Pro Trp Lys Arg Ile Lys Gly Ser Glu Ala Asp Arg Gln Arg Ala Gly 200

-continued

Thr Val Thr Gly Leu Ala Val Asn Ile Ala Ala Leu Leu Ser Val Met 215 Leu Gln Pro Tyr Met Pro Thr Val Ser Ala Thr Ile Gln Ala Gln Leu Gln Leu Pro Pro Pro Ala Cys Ser Ile Leu Leu Thr Asn Phe Leu Cys Thr Leu Pro Ala Gly His Gln Ile Gly Thr Val Ser Pro Leu Phe Gln 265 Lys Leu Glu Asn Asp Gln Ile Glu Ser Leu Arg Gln Arg Phe Gly Gly Gly Gln Ala Lys Thr Ser Pro Lys Pro Ala Val Val Glu Thr Val Thr Thr Ala Lys Pro Gln Gln Ile Gln Ala Leu Met Asp Glu Val Thr Lys Gln Gly Asn Ile Val Arg Glu Leu Lys Ala Gln Lys Ala Asp Lys Asn 325 330 Glu Val Ala Ala Glu Val Ala Lys Leu Leu Asp Leu Lys Lys Gln Leu 345 Ala Val Ala Glu Gly Lys Pro Pro Glu Ala Pro Lys Gly Lys Lys 360 Lvs <210> SEO ID NO 168 <211> LENGTH: 369 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with C-terminal 6xHis affinity tag <400> SEQUENCE: 168 Met Ala Lys Asp Asn Val Pro Phe His Ser Leu Val Phe Pro Cys Ser Ala Leu Gly Ala Glu Asp Asn Tyr Thr Leu Val Ser His Leu Ile Ala 25 Thr Glu Tyr Leu Asn Tyr Glu Asp Gly Lys Phe Ser Lys Ser Arg Gly Val Gly Val Phe Gly Asp Met Ala Gln Asp Thr Gly Ile Pro Ala Asp Ile Trp Arg Phe Tyr Leu Leu Tyr Ile Arg Pro Glu Gly Gln Asp Ser Ala Phe Ser Trp Thr Asp Leu Leu Leu Lys Asn Asn Ser Glu Leu Leu 85 90 95 Asn Asn Leu Gly Asn Phe Ile Asn Arg Ala Gly Met Phe Val Ser Lys Phe Phe Gly Gly Tyr Val Pro Glu Met Val Leu Thr Pro Asp Asp Gln Arg Leu Leu Ala His Val Thr Leu Glu Leu Gln His Tyr His Gln Leu 135 Leu Glu Lys Val Arg Ile Arg Asp Ala Leu Arg Ser Ile Leu Thr Ile 150 Ser Arg His Gly Asn Gln Tyr Ile Gln Val Asn Glu Pro Trp Lys Arg 170 Ile Lys Gly Ser Glu Ala Asp Arg Gln Arg Ala Gly Thr Val Thr Gly 185

Leu Ala Val Asn Ile Ala Ala Leu Leu Ser Val Met Leu Gln Pro Tyr

200 Met Pro Thr Val Ser Ala Thr Ile Gln Ala Gln Leu Gln Leu Pro Pro 215 Pro Ala Cys Ser Ile Leu Leu Thr Asn Phe Leu Cys Thr Leu Pro Ala Gly His Gln Ile Gly Thr Val Ser Pro Leu Phe Gln Lys Leu Glu Asn 250 Asp Gln Ile Glu Ser Leu Arg Gln Arg Phe Gly Gly Gln Ala Lys Thr Ser Pro Lys Pro Ala Val Val Glu Thr Val Thr Thr Ala Lys Pro Gln Gln Ile Gln Ala Leu Met Asp Glu Val Thr Lys Gln Gly Asn Ile Val Arg Glu Leu Lys Ala Gln Lys Ala Asp Lys Asn Glu Val Ala Ala 310 315 Glu Val Ala Lys Leu Leu Asp Leu Lys Lys Gln Leu Ala Val Ala Glu 325 330 Gly Lys Pro Pro Glu Ala Pro Lys Gly Lys Lys Lys Gly Lys Pro 345 Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr His His His His 360 His <210> SEQ ID NO 169 <211> LENGTH: 343 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with N-terminal 6xHis affinity tag <400> SEQUENCE: 169 Met His His His His His Gly Lys Pro Ile Pro Asn Pro Leu Leu 10 Gly Leu Asp Ser Thr Val Glu Glu Pro Arg Ala Lys Tyr Leu Asn Tyr Glu Asp Gly Lys Phe Ser Lys Ser Arg Gly Val Gly Val Phe Gly Asp Met Ala Gln Asp Thr Gly Ile Pro Ala Asp Ile Trp Arg Phe Tyr Leu Leu Tyr Ile Arg Pro Glu Gly Gln Asp Ser Ala Phe Ser Trp Thr Asp Leu Leu Leu Lys Asn Asn Ser Glu Leu Leu Asn Asn Leu Gly Asn Phe Ile Asn Arg Ala Gly Met Phe Val Ser Lys Phe Phe Gly Gly Tyr Val 105 Pro Glu Met Val Leu Thr Pro Asp Asp Gln Arg Leu Leu Ala His Val 120 Thr Leu Glu Leu Gln His Tyr His Gln Leu Leu Glu Lys Val Arg Ile Arg Asp Ala Leu Arg Ser Ile Leu Thr Ile Ser Arg His Gly Asn Gln 150 155 Tyr Ile Gln Val Asn Glu Pro Trp Lys Arg Ile Lys Gly Ser Glu Ala 170

Asp Arg Gln Arg Ala Gly Thr Val Thr Gly Leu Ala Val Asn Ile Ala \$180\$ \$185\$ \$190\$

Ala Leu Leu Ser Val Met Leu Gln Pro Tyr Met Pro Thr Val Ser Ala 200 Thr Ile Gln Ala Gln Leu Gln Leu Pro Pro Pro Ala Cys Ser Ile Leu Leu Thr Asn Phe Leu Cys Thr Leu Pro Ala Gly His Gln Ile Gly Thr Val Ser Pro Leu Phe Gln Lys Leu Glu Asn Asp Gln Ile Glu Ser Leu Arg Gln Arg Phe Gly Gly Gln Ala Lys Thr Ser Pro Lys Pro Ala Val Val Glu Thr Val Thr Thr Ala Lys Pro Gln Gln Ile Gln Ala Leu Met Asp Glu Val Thr Lys Gln Gly Asn Ile Val Arg Glu Leu Lys Ala 295 Gln Lys Ala Asp Lys Asn Glu Val Ala Ala Glu Val Ala Lys Leu Leu 310 315 Asp Leu Lys Lys Gln Leu Ala Val Ala Glu Gly Lys Pro Pro Glu Ala 325 330 Pro Lys Gly Lys Lys Lys 340 <210> SEQ ID NO 170 <211> LENGTH: 343 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Methionyl tRNA Synthetase polypeptide with C-terminal 6xHis affinity tag <400> SEQUENCE: 170 Met Val Glu Glu Pro Arg Ala Lys Tyr Leu Asn Tyr Glu Asp Gly Lys Phe Ser Lys Ser Arg Gly Val Gly Val Phe Gly Asp Met Ala Gln Asp Thr Gly Ile Pro Ala Asp Ile Trp Arg Phe Tyr Leu Leu Tyr Ile Arg 40 Pro Glu Gly Gln Asp Ser Ala Phe Ser Trp Thr Asp Leu Leu Lys Asn Asn Ser Glu Leu Leu Asn Asn Leu Gly Asn Phe Ile Asn Arg Ala 65 70 75 80 Gly Met Phe Val Ser Lys Phe Phe Gly Gly Tyr Val Pro Glu Met Val Leu Thr Pro Asp Asp Gln Arg Leu Leu Ala His Val Thr Leu Glu Leu Gln His Tyr His Gln Leu Leu Glu Lys Val Arg Ile Arg Asp Ala Leu 120 Arg Ser Ile Leu Thr Ile Ser Arg His Gly Asn Gln Tyr Ile Gln Val 135 Asn Glu Pro Trp Lys Arg Ile Lys Gly Ser Glu Ala Asp Arg Gln Arg Ala Gly Thr Val Thr Gly Leu Ala Val Asn Ile Ala Ala Leu Leu Ser Val Met Leu Gln Pro Tyr Met Pro Thr Val Ser Ala Thr Ile Gln Ala

												COII	CIII	aca	
			180					185					190		
Gln	Leu	Gln 195	Leu	Pro	Pro	Pro	Ala 200	Cys	Ser	Ile	Leu	Leu 205	Thr	Asn	Phe
Leu	Cys 210	Thr	Leu	Pro	Ala	Gly 215	His	Gln	Ile	Gly	Thr 220	Val	Ser	Pro	Leu
Phe 225	Gln	Lys	Leu	Glu	Asn 230	Asp	Gln	Ile	Glu	Ser 235	Leu	Arg	Gln	Arg	Phe 240
Gly	Gly	Gly	Gln	Ala 245	Lys	Thr	Ser	Pro	Lys 250	Pro	Ala	Val	Val	Glu 255	Thr
Val	Thr	Thr	Ala 260	Lys	Pro	Gln	Gln	Ile 265	Gln	Ala	Leu	Met	Asp 270	Glu	Val
Thr	Lys	Gln 275	Gly	Asn	Ile	Val	Arg 280	Glu	Leu	Lys	Ala	Gln 285	Lys	Ala	Asp
Lys	Asn 290	Glu	Val	Ala	Ala	Glu 295	Val	Ala	Lys	Leu	Leu 300	Asp	Leu	Lys	Lys
Gln 305	Leu	Ala	Val	Ala	Glu 310	Gly	Lys	Pro	Pro	Glu 315	Ala	Pro	Lys	Gly	Lys 320
Lys	Lys	Lys	Gly	Lys 325	Pro	Ile	Pro	Asn	Pro 330	Leu	Leu	Gly	Leu	Asp 335	Ser
Thr	His	His	His 340	His	His	His									
<211 <212 <213 <220)> FE 3> Ol	ENGTH PE: RGANI EATUR THER	H: 75 PRT ISM: RE: INFO	Art: ORMA:	TION	: Met	Seque thior nity	nyl t	RNA	Synt	:heta	ase l	ooly <u>l</u>	pepti	ide with
< 400)> SE	EQUEN	ICE :	171											
Met 1	His	His	His	His 5	His	His	Gly	Lys	Pro 10	Ile	Pro	Asn	Pro	Leu 15	Leu
Gly	Leu	Asp	Ser 20	Thr	Asp	Glu	Val	Thr 25	Lys	Gln	Gly	Asn	Ile 30	Val	Arg
Glu	Leu	35 Lys	Ala	Gln	ГЛа	Ala	Asp 40	ГЛа	Asn	Glu	Val	Ala 45	Ala	Glu	Val
Ala	Lys 50	Leu	Leu	Asp	Leu	Lys 55	Lys	Gln	Leu	Ala	Val 60	Ala	Glu	Gly	Lys
Pro 65	Pro	Glu	Ala	Pro	Lys 70	Gly	ГЛа	ГЛа	ГЛа	Lys 75					
<211 <212 <213 <220)> FE 3> O'I	ENGTH PE: RGANI EATUR THER	H: 75 PRT ISM: RE: INFO	Art: DRMA	CION	: Met	Seque chior nity	nyl t	RNA	Synt	:heta	ase p	ooly <u>r</u>	pepti	ide with
<400)> SE	EQUEN	ICE :	172											
Met 1	Asp	Glu	Val	Thr 5	Lys	Gln	Gly	Asn	Ile 10	Val	Arg	Glu	Leu	Lys 15	Ala
Gln	Lys	Ala	Asp 20	ГЛа	Asn	Glu	Val	Ala 25	Ala	Glu	Val	Ala	Lys	Leu	Leu
Asp	Leu	35 Lys	ГЛа	Gln	Leu	Ala	Val 40	Ala	Glu	Gly	ГÀв	Pro 45	Pro	Glu	Ala
Pro	Lys	Gly	Lys	Lys	Lys	Lys	Gly	Lys	Pro	Ile	Pro	Asn	Pro	Leu	Leu

50	55		60		
Gly Leu Asp Ser Thr H: 65 70		His His His 75			
<pre><210 > SEQ ID NO 173 <211 > LENGTH: 396 <212 > TYPE: DNA <213 > ORGANISM: Artif: <220 > FEATURE: <223 > OTHER INFORMATIO polynucleotide</pre>	_		thionyl tRN.	A Synthetase	
<400> SEQUENCE: 173					
ttgcctccac cggcgtgcag	catcttgctg	accaacttcc	tgtgcaccct	gccggccggt	60
caccaaatcg gtaccgtgag	cccgctgttc	caaaagctgg	agaatgacca	aattgagagc	120
ctgcgtcaac gttttggtgg	tggccaggcc	aaaacgtccc	cgaaaccggc	agttgtcgaa	180
accgttacca cggcaaaacc	gcaacagatt	caggcactga	tggacgaggt	cacgaaacag	240
ggcaacatcg tgcgcgaatt	gaaagcgcag	aaagcggata	agaacgaggt	ggctgctgag	300
gtcgcgaagc tgctggattt	gaagaaacag	ctggcggttg	cggaaggcaa	accaccggaa	360
gcgcctaaag gtaagaagaa	gaagtaatga	ctcgag			396
<pre><210> SEQ ID NO 174 <211> LENGTH: 1056 <212> TYPE: DNA <213> ORGANISM: Artif: <220> FEATURE: <223> OTHER INFORMATIC</pre>	_		thionyl tRN	A Synthetase	
<400> SEQUENCE: 174					
gcgaaagaca acgttccatt	tcacagcctg	gttttcccgt	gtagcgcgct	gggtgcagaa	60
gataactata ccctggtttc	tcacctgatc	gccaccgagt	acctgaacta	tgaggatggc	120
aaatttagca agagccgcgg	cgtcggcgtt	ttcggtgaca	tggctcagga	cacgggtatt	180
ccggcggaca tctggcgctt	ctacctgctg	tacattcgtc	cggagggtca	ggatagegea	240
tttagctgga ccgacttgct	gctgaagaat	aatagcgagc	tgttgaacaa	tttgggtaac	300
tttatcaacc gtgcgggtat	gtttgtgtcc	aaattcttcg	gcggttacgt	cccggagatg	360
gttctgactc cggatgatca	gegtetgetg	gcgcacgtca	ccttggaatt	gcagcactac	420
caccagetge tggagaaggt	ccgcatccgc	gacgetetge	gtagcattct	gacgatcagc	480
cgtcatggta atcaatatat	ccaagttaac	gaaccgtgga	aacgtatcaa	aggtagegag	540
geggaeegte agegegeggg	caccgtgacc	ggcctggccg	ttaatattgc	ggcgctgttg	600
agegtgatge tgeageegta	tatgccgact	gtgagcgcca	ccatccaggc	acagctgcaa	660
ctgccgccgc cagcttgcag	cattetgetg	accaatttcc	tgtgcacctt	gccggcaggc	720
catcaaattg gtacggtgtc	tccactgttc	cagaagctgg	aaaacgacca	aattgagtcc	780
ctgcgtcaac gttttggtgg	tggtcaagcg	aaaacgtcgc	ctaaaccggc	ggtggtcgaa	840
acggttacga ccgcaaaacc	gcaacaaatc	caggetetga	tggatgaggt	gaccaaacaa	900
ggcaatattg ttcgtgaact	gaaggcccag	aaagcagaca	agaacgaggt	cgccgcggaa	960
gtcgcaaaac tgctggattt	gaagaaacag	ctggcagttg	cggaaggtaa	gccgccggag	1020
gcgccgaagg gcaagaagaa	gaaataatga	ctcgag			1056

-continued

<211> LENGTH: 978

```
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Codon optimized Methionyl tRNA Synthetase
      polynucleotide
<400> SEQUENCE: 175
gttgaagaac ctcgtgcaaa atacctgaac tatgaggacg gtaaattcag caagagccgc
                                                                       60
ggtgttggtg tgtttggcga tatggcccag gacaccggta ttccggcgga catttggcgt
                                                                      120
ttctatctgc tgtacattcg tccggaaggc caggattccg cattcagctg gaccgacctg
                                                                      180
ctgctgaaga acaacagcga actgctgaac aacctgggta attttattaa tcgcgccggt
atgtttgttt ctaaattctt tggcggttat gttccggaga tggttctgac gccagatgat
cagogtotgo tggogcatgt tactttggaa ctgcagcact atcatcagtt gctggagaaa
                                                                      360
gtccgcatcc gcgacgcgct gcgttcgatc ttgacgatca gccgccacgg taaccaatac
                                                                      420
                                                                      480
attcaagtga acgagccgtg gaaacgtatc aagggttctg aagcggaccg tcagcgtgca
ggcaccgtga ccggtctggc ggtgaatatc gcggcgttgt tgtccgtgat gctgcagccg
                                                                      540
tacatgccga cggtgagcgc caccatccaa gcacaattgc agctgccgcc gccggcgtgc
                                                                      600
agcatcctgc tgaccaattt tctgtgtacg ctgccggcgg gccaccaaat tggcaccgtc
                                                                      660
ageceactgt tecaaaaget ggagaatgat cagattgaaa geetgegtea gegtttegge
                                                                      720
                                                                      780
ggcggtcaag ctaaaacgag ccctaagccg gccgtggtcg aaaccgtcac gaccgcaaaa
ccgcaacaga ttcaagccct gatggacgag gtcaccaaac agggcaacat cgtgcgtgag
                                                                      840
                                                                      900
ctgaaagcac aaaaggctga caagaatgag gttgcagcgg aagttgcgaa actgctggat
ctgaagaagc agctggcggt cgccgagggt aaaccgcctg aggctccgaa aggtaagaag
                                                                      960
                                                                      978
aagaaataat gactcgag
<210> SEQ ID NO 176
<211> LENGTH: 174
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Codon optimized Methionyl tRNA Synthetase
      polynucleotide
<400> SEQUENCE: 176
gacgaggtta ccaaacaggg taacatcgtg cgtgaactga aagcccaaaa ggctgacaag
                                                                       60
aacgaggtcg cagctgaagt tgcgaaactg ttggatctga agaaacagct ggcggtggca
                                                                      120
gaaggcaaac caccggaggc gccgaaaggt aagaagaaga aataatgact cgag
                                                                      174
<210> SEQ ID NO 177
<211> LENGTH: 25
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 177
atatattt tttaatttta atttt
                                                                       25
<210> SEQ ID NO 178
<211> LENGTH: 12
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 178
ttataatata ta
                                                                       12
```

-continued

<210> SEQ ID NO 179	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 179	
tagagggtag agggtagagg	20
<210> SEQ ID NO 180	
<211> LENGTH: 10	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
400. GEOMENICE 100	
<400> SEQUENCE: 180	
cacacacaca	10
Cacacacaca	10
<210> SEQ ID NO 181	
<211> LENGTH: 246	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
2215 OKOMISM. Homo suprems	
<400> SEQUENCE: 181	
gaggttgggg ggtcagcccc ccgcccggcc agctgccccg tccgggaggg aggttgaggg	60
gtcagccccc cgcccggcca gccgccccgc ccgggaggga	120
gcccggccag ccgccccgtc cgggagggag gttggggggt cagccccccg cccggccagc	180
cgccccgtcc gggagggagg tggggggtc agccccccg cccggccagc cgccccgccc	240
gggagg	246
010 (FO TO NO 100	
<210> SEQ ID NO 182 <211> LENGTH: 24	
<211> LENGIH: 24 <212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 182	
1007 DEQUENCE. 102	
cacacacaca cacacacaca caca	24

We claim:

- 1. A pharmaceutical composition, comprising an isolated polynucleotide that encodes a methionyl-tRNA synthetase (MetRS) polypeptide of about 50 to about 100 amino acids in length and comprising an amino acid sequence that is at least 95% identical to SEQ ID NO: 137, wherein the polynucleotide is selected from (a) a cDNA polynucleotide and (b) a modified mRNA polynucleotide, wherein the polypeptide has an extracellular signaling activity, and wherein the composition is substantially endotoxin-free.
- 2. The pharmaceutical composition of claim 1, wherein the MetRS polypeptide consists of SEQ ID No. 137 or differs from SEQ ID NO: 137 by substitution, deletion, and/or addition of about 1, 2, or 3 amino acids.
- 3. The pharmaceutical composition of claim 1, wherein the MetRS polypeptide is fused to a heterologous polypeptide.
- **4**. The pharmaceutical composition of claim **3**, wherein the heterologous polypeptide is selected from the group consisting of purification tags, epitope tags, targeting sequences,

- signal peptides, membrane translocating sequences, and pharmacokinetic (PK) property modifiers.
- 5. The pharmaceutical composition of claim 1, wherein the isolated polynucleotide is at least 95% identical to SEQ ID No: 138
- **6**. The pharmaceutical composition of claim **1**, wherein the isolated polynucleotide comprises one or more transcriptional and/or translational control elements.
- 7. The pharmaceutical composition of claim 1, wherein the isolated polynucleotide is a modified mRNA polynucleotide that comprises at least one modified base.
- 8. The pharmaceutical composition of claim 1, wherein the isolated polynucleotide is formulated for delivery encapsulated in a lipid particle, a liposome, a vesicle, a nanosphere, or a nanoparticle.
 - **9**. The pharmaceutical composition of claim **1**, which is suitable for intravenous administration.

* * * * *